
TP 18

Dictionnaires

Les dictionnaires sont un nouveau type permettant de contenir d'autres données, comme les listes ou les tuples.
Nous en avons en fait déjà croisés au TP précédent et nous allons approfondir.

I Introduction

Lorsque nous avons écrit dans le TP précédent

d = {"sexe": "2", "prenom": "EMMA", "annee": "2004", "nombre": "6634"}

nous avions déjà affaire à un dictionnaire. Ce qu'on nomme en Python dictionnaire est un ensemble de valeurs
auxquelles on accède via les clés. Ici les clés sont les noms "sexe", "prenom", "annee", "nombre". Les valeurs
correspondantes sont obtenues avec la syntaxe d["sexe"], d["prenom"] etc.

Cela ressemble donc fort à une liste dans laquelle les indices ne sont pas seulement des nombres entiers, mais
peuvent être des chaines de caractères. On les appelle aussi parfois des tableaux associatifs, car ils associent une
valeur à la clé donnée. Et ils ont des applications bien pratiques.

Quelques remarques sur le fonctionnement des dictionnaires :
• L'ordre des clés n'a pas vraiment d'importance.
• Bien sûr, chaque clé ne peut apparaitre qu'une seule fois, sinon cela n'a pas de sens.
• Les clés peuvent être en fait de beaucoup de types différents : chaines de caractères, mais aussi entiers,

flottants, tuples composés de ceux-ci…

Dans un dictionnaire d, et pour une valeur notée k, l'accès à d[k] va déclencher une erreur si k n'est pas une
clé de d. Il est donc souvent utile de pouvoir tester à l'avance cette condition, avec la syntaxe k in d dont la
négation est k not in d :

>>> "prenom" in d

True

>>> "age" in d

False

>>> "age" not in d

True

>>> d["age"]

KeyError: 'age'

Par contre on peut rajouter des clés au fur et à mesure :

>>> d["age"] = 19

>>> print(d)

{'sexe': '2', 'prenom': 'EMMA', 'annee': '2004', 'nombre': '6634', 'age': 19}

ou en supprimer

>>> del d["nombre"]

>>> print(d)

{'sexe': '2', 'prenom': 'EMMA', 'annee': '2004', 'age': 19}

Le dictionnaire vide est noté tout simplement {}. Parfois on souhaite partir d'un dictionnaire vide et ajouter des
clés au fur et à mesure.

Il existe aussi, comme pour les listes, une syntaxe en compréhension, où on peut donner à la fois une expression
pour les clés et pour les valeurs. Étudions par exemple le dictionnaire suivant

d = {x**2: x for x in range(10)}

BCPST1B 2025–2026
Lycée Hoche, Versailles

1/6 L.-C. LEFÈVRE

TP 18 Dictionnaires

qui donne

{0: 0, 1: 1, 4: 2, 9: 3, 16: 4, 25: 5, 36: 6, 49: 7, 64: 8, 81: 9}

dont les clés sont (certains) nombres et les valeurs correspondantes vont être leur racines carrées. Ce dictionnaire
permet donc de calculer directement les racines carrés de ces nombres (et seulement ceux-là), par exemple d[49]
donne 7 (il n'y a plus de guillemets ici : les clés sont de type int). Mathématiquement, un dictionnaire est une
application de l'ensemble des clés vers l'ensemble des valeurs…

Les dictionnaires sont aussi utilisés par le langage Python lui-même pour maintenir des informations sur le
programme en cours de fonctionnement… La fonction globals() renvoie un dictionnaire des variables actuel
lement enregistrées dans la session, affichez-le !

II Itération sur un dictionnaire

Dans le TP précédent et jusqu'à maintenant nos dictionnaire avaient tous quatre clés fixes et bien connues à
l'avance ; la liste de tous les prénoms était en fait une liste de dictionnaires. Mais en pratique, une fonction reçoit
en argument un dictionnaire et ne sait pas forcément quelles en sont les clés. Il faut donc utiliser une boucle for
pour parcourir un à un tous les éléments du dictionnaire, tout comme on parcourt les éléments d'une liste de
longueur quelconque.

Cependant il y a trois façons de faire…

Reprenons un dictionnaire :

d = {"sexe": "2", "prenom": "EMMA", "annee": "2004", "nombre": "6634"}

• Itérer sur les clés de d : c'est une boucle for sur l'objet d.keys(), qui fournit unes par unes les clés de d.

>>> for k in d.keys(): print(k)

sexe

prenom

annee

nombre

• Itérer sur les valeurs de d : de même, c'est une boucle for qui porte sur l'objet d.values() qui fournit
les valeurs unes par unes.

>>> for v in d.values(): print(v)

2

EMMA

2004

6634

• Itérer sur les paires (clé, valeur) de d avec l'objet d.items(), qui fournit des tuples.

>>> for (k, v) in d.items(): print("clé :", k, "valeur :", v)

clé : sexe valeur : 2

clé : prenom valeur : EMMA

clé : annee valeur : 2004

clé : nombre valeur : 6634

Bien sûr, en pratique itérer sur les clés fonctionne toujours, puisque si on a k alors on a accès à d[k]. Mais il faut
considérer que l'accès à une valeur est une opération lourde, bien plus lourde dans les dictionnaire que l'accès
aux éléments d'une liste (voir l'annexe). Ainsi itérer directement sur les paires, ou sur les valeurs, est bien plus
rapide que d'itérer sur les clés puis de chercher les valeurs correspondantes.

BCPST1B 2025–2026
Lycée Hoche, Versailles

2/6 L.-C. LEFÈVRE

TP 18 Dictionnaires

Dans les exercices de cette partie, aucune méthode n'est extraordinairement nouvelle. Il s'agit de boucles pour
parcourir un dictionnaire et il faut seulement se poser la question du choix de l'une des trois méthodes d'itération
précédentes. Ensuite, ce sont les mêmes types d'algorithmes que ceux rencontrés de nombreuses fois sur les listes.

Exercice 1 Itérer sur les valeurs

On représente une liste de courses par un dictionnaire qui donne, pour chaque produit acheté, le prix en euros.

courses = {"pain": 1.20, "camembert": 3.0, "salade": 1.5, "savon": 3.5}

1. Écrire une fonction facture(d) qui prend en argument un tel dictionnaire et qui calcul le montant total
de la facture.

2. Écrire une fonction est_trop_luxueux(d) qui renvoie True si l'un des articles a un prix supérieur à 5 euros,
et False sinon.

Exercice 2 Itérer sur les clés

On représente une recette de cuisine par un dictionnaire dont les clés sont les ingrédients et les valeurs,
pour chaque ingrédient, sont la quantité (l'unité est variable selon l'ingrédient : gramme, millilitre, nombre).
Par exemple

crepes = {"farine": 250, "oeufs": 4, "lait": 300, "beurre": 50, "sucre": 30}

1. Écrire une fonction nombre_ingredients(d) qui renvoie le nombre d'ingrédients différents de la recette.

2. Supposons qu'on soit allergique aux noix. Écrire une fonction est_sans_noix(d) qui renvoie True si la
recette ne contient pas de noix, et False sinon.

3. On souhaite faire un régime. Écrire une fonction est_sain(d) qui renvoie True si la recette contient moins
de 50 grammes de sucre, et False sinon.

Attention car il peut se produire deux situations : ou bien "sucre" sera dans les clés avec une valeur qui

doit être inférieure à 50, ou bien "sucre" ne sera pas du tout dans les clés.

Exercice 3 Itérer sur les couples

On représente un porte-monnaie contenant des pièces ou des billets par un dictionnaire d, où d[x] représente
le nombre de billets (ou pièces) de valeurs x. Par exemple, le dictionnaire

d = {1: 4, 2: 7, 10: 1}

représente un porte-monnaie avec 4 pièces de 1 euro, 7 pièces de 2 euros et 1 billet de 10 euros. Remarquez
qu'on ne se préoccupe en fait pas de s'il s'agit de billets ou de pièces, ni si les valeurs de ces pièces existent
réellement, tout cela pourrait fonctionner de la même façon dans d'autres systèmes monétaires que l'euro. Dans
cet exemple la somme totale est de 28 euros.

Écrire une fonction oseille(d) qui prend en argument un tel dictionnaire représentant un porte-monnaie et
qui renvoie la somme d'argent totale que cela représente.

III Problèmes

Exercice 4
On souhaite dénombrer les anagrammes d'un mot. Pour cela la première étape est de partir d'un mot, représenté
comme une chaine de caractères, et de compter combien de fois apparait chaque lettre. Si on n'avait pas les
dictionnaires, il faudrait savoir à l'avance avec combien de lettres on travaille (par exemple 26 — mais alors il
n'y a plus de marge pour les accents ou les majuscules) et initialiser une liste de taille 26 comptant combien
de fois chaque lettre apparait. Avec les dictionnaires, nous allons pouvoir travailler avec des mots absolument
quelconques et sans connaitre les lettres à l'avance.

BCPST1B 2025–2026
Lycée Hoche, Versailles

3/6 L.-C. LEFÈVRE

TP 18 Dictionnaires

1. Écrire une fonction compte_lettres(s) qui prend en argument une chaine de caractères s et qui renvoie
un dictionnaire d, dont les clés sont des lettres apparaissant dans s et dont la valeur d[x] est le nombre
de fois que la lettre x apparait.

Pour cela on a besoin d'initialiser un dictionnaire vide au début, puis d'une boucle qui fournit unes par
unes les lettres de s. Attention car à chaque lettre, il faut tester si elle est déjà dans le dictionnaire (auquel
cas incrémenter la valeur), ou sinon l'ajouter dedans simplement.

2. Écrire une fonction nombre_anagrammes(s) qui compte le nombre d'anagrammes de s.

On rappelle qu'il s'agit de la factorielle du nombre de lettres de s, divisé par le produit des factorielles du
nombre de fois que chaque lettre apparait ; on a donc besoin d'appeler la fonction précédente et d'itérer
sur le dictionnaire d pour calculer ce produit de factorielles. On pourra ré-écrire rapidement la fonction
factorielle, ou utiliser celle fournie avec from math import factorial.

Exercice 5
On donne le dictionnaire suivant :

chiffres = {"zéro": 0, "un": 1, "deux": 2, "trois": 3, "quatre": 4, "cinq": 5, "six": 6,

"sept": 7, "huit": 8, "neuf": 9}

1. Écrire une fonction traduit(L) qui prend en argument une liste de mots parmi ceux-ci, et affiche succes
sivement les chiffres correspondants.

>>> traduit(["deux", "huit", "trois"])

2

8

3

2. Écrire une fonction nombre(L) qui prend en argument toujours une liste de mots, et renvoie le nombre que
cela forme, de type int.

>>> nombre(["deux", "huit", "trois"])

283

On remarque qu'étant donné un nombre 𝑁 écrit avec la liste de ses chiffres 𝑁 = 𝑎𝑘…𝑎1𝑎0 (où 𝑎0 est le
chiffre des unités, 𝑎1 le chiffre des dizaines, etc) alors le nombre 𝑁 est égal à

𝑁 = (⋯(𝑎𝑘 × 10 + 𝑎𝑘−1) × 10 + ⋯) × 10 + 𝑎0

par exemple 283 = (2 × 10 + 8) × 10 + 3, ce qui permet de calculer 𝑁 en lisant ses chiffres de gauche à
droite (donc dans l'ordre naturel pour le problème que nous traitons là).

3. Bonus : étant donnée une chaine de caractères s, la méthode s.split() « casse » la chaine aux caractères
espaces et produit une liste de mots :

>>> s = "deux huit trois"

>>> s.split()

['deux', 'huit', 'trois']

Ré-écrire la fonction nombre pour qu'elle prenne en argument une seule chaine de caractères.

BCPST1B 2025–2026
Lycée Hoche, Versailles

4/6 L.-C. LEFÈVRE

TP 18 Dictionnaires

Exercice 6 (*) Matrices creuses

On s'intéresse à des matrices de taille (𝑛, 𝑝) contenant une grande majorité de coefficients nuls, et quelques
coefficients par-ci par-là non nuls. Plutôt que de stocker en mémoire un tableau entier de 𝑛 × 𝑝 cases dont la
plupart vont être nulles, on représente une telle matrice par un dictionnaire A dont les clés sont des couples
(𝑖, 𝑗) (0 ⩽ 𝑖 < 𝑛 et 0 ⩽ 𝑗 < 𝑝 comme d'habitude dans la convention informatique) et la valeur A[(i, j)] est le
coefficient d'indice (𝑖, 𝑗). Si une clé n'est pas présente, on interprète le coefficient correspondant comme étant
nul (mais réciproquement, il peut y avoir des clés avec une valeur nulle). Par exemple la grosse matrice

𝐴 =

(

0
0
0
0

0
0
0
−1

5
0
0
0

0
0
7
0

0
0
0
0)

sera représentée tout simplement par le dictionnaire

A = {(0, 2): 5, (2, 3): 7, (3, 1): -1}

Écrire les fonctions classiques dans ce contexte :

1. identité(n) : matrice identité de taille 𝑛,

2. somme(A, B) : somme de deux matrices,

3. produit(A, B) : produit de matrices,

4. est_triangulaire_supérieure(A) : renvoie True si la matrice est triangulaire supérieure, False sinon.

Étonnament, les fonctions n'ont pas besoin de connaitre les tailles des matrices, et la notion n'a même pas de
sens ici car on peut toujours les « prolonger par 0 » en des matrices plus grandes…

Remarque. On tombe toujours sur le même problème : il faut tester si une clé est présente ou non avant d'y
accéder, et il faut considérer que le coefficient est zéro si la clé n'apparait pas. Cela est assez ennuyeux surtout
que tester si une clé est présente dans le dictionnaire est déjà une opération lourde, tout autant que d'accéder
à la valeur (voir l'annexe). Se renseigner notamment sur les méthodes d.setdefault(k, v) et d.get(k, v)
ainsi que sur le type defaultdict et comment cela permet de traiter élégamment ce problème.

IV Annexe : tables de hachage

Nous avons déjà dit plusieurs fois que dans une liste, il faut imaginer que les éléments sont rangés les uns à la
suite des autres comme dans des cases de la mémoire. Cela permet d'accéder directement au 𝑖-ème élément de
la liste.

Dans un dictionnaire, on peut imaginer naïvement ranger à la suite les clés et leurs valeurs, dans des cases aussi.
Cependant les problèmes suivants se posent :

• Pour rechercher une clé du dictionnaire, et sa valeur correspondante, il est nécessaire de parcourir toutes les
clés unes par unes, exactement comme quand on cherche un élément dans une liste. Cela peut être long s'il
y a beaucoup de clés.

• De plus, si les clés sont de type chaine de caractères, comparer les clés prend plus de temps que de comparer
des nombres ; car pour comparer deux chaines il faut comparer successivement leurs caractères uns par uns.

Ainsi cette méthode peut vite devenir très lourde et peu efficace, et pour enregistrer un dictionnaire dont les
clés sont des chaines de caractères, toutes les fonctions seront beaucoup plus lentes que celles qui travaillent sur
les listes.

La solution qui a été trouvée s'appelle table de hachage. Elle consiste à définir une certaine fonction mathé
matique (assez abstraite) dite fonction de hachage, calculable sur tous les objets possibles pouvant servir de
clé, dont le résultat est un simple nombre entier qui puisse nous dire où se situe la clé dans la mémoire. Cela
résout le premier problème car comparer des nombres est nettement plus rapide que comparer des chaines de

BCPST1B 2025–2026
Lycée Hoche, Versailles

5/6 L.-C. LEFÈVRE

TP 18 Dictionnaires

caractères, et cela résout partiellement le second problème — au minimum on peut espérer ranger les clés dans
l'ordre croissant selon leur valeur de hachage, et rechercher les clés rapidement grâce à la dichotomie.

En fait un problème immédiat se pose : il y a de toute façon beaucoup plus de clés possibles que de nombres
et certaines clés auront donc la même valeur par la fonction de hachage (on parle de collision), en termes
mathématiques la fonction de hachage part d'un ensemble très gros vers un ensemble plus petit et ne peut donc
pas être injective (principe des tiroirs). Cela rend la conception de tables de hachages plus subtile que ce qui est
décrit ici. La fonction de hachage doit être créée de telle façon à ce que les collisions ne se produisent pas trop
souvent, et si c'est le cas, si deux clés se retrouvent avec la même valeur de hachage, alors tant pis : on les stocke
à la suite et on comparera les clés comme dans la méthode naïve.

En Python, la fonction de base hash(x) permet de connaitre la valeur de hachage d'un objet x, même si ce
nombre ne nous dit concrètement pas grand chose d'intéressant…

>>> x = 3

>>> hash(x)

3

OK, pour les nombres entiers c'est eux-mêmes

>>> x = 3.14

>>> hash(x)

322818021289917443

que faire de cette information ?

>>> x = (1, 2)

>>> hash(x)

-3550055125485641917

stop, stop !!!

>>> x = "steak"

>>> hash(x)

5425928401636965275

le steak est haché !

Tous les objets ne peuvent pas servir de clé. Imaginons un dictionnaire contenant pour clés les deux listes
L = [1, 2] et M = [1, 3] (pourquoi pas), avec une valeur pour chacune.

d = {L: "truc", M: "machin"}

Puis faisons M[1] = 2. Les listes L et M deviennent alors égales, et devraient donc avoir la même valeur de hachage,
du coup il n'y a plus qu'une seule clé ? Qu'est-ce que d[[1, 2]] ? Comment retrouver alors les valeurs ? En fait,
cela est interdit et les listes ne sont pas hachables. Les objets hachables ne doivent jamais pouvoir être modifiés
au cours du programme, et la fonction de hachage doit toujours renvoyer la même valeur pour un même objet.

>>> L = [1, 2]

>>> hash(L)

TypeError: unhashable type: 'list'

BCPST1B 2025–2026
Lycée Hoche, Versailles

6/6 L.-C. LEFÈVRE

	I Introduction
	II Itération sur un dictionnaire
	III Problèmes
	IV Annexe : tables de hachage

