
TP 17

Traitement de données en tables

C'est bientôt la Saint-Valentin ! Quoi de plus romantique que d'écrire un programme Python pour manipuler 
la base de données de tous les prénoms des nouveaux-nés donnés en France et déclarés à l'état civil entre 2000 
et 2009 ?

I Introduction

Le fichier materiel.zip contient un fichier prenoms.csv avec toute l'information dont nous avons besoin. Dans 
sa forme actuelle il contient 110 605 lignes, et on peut l'ouvrir avec un éditeur de texte même si cela est difficile 
pour travailler. Les premières lignes du fichier sont les suivantes :

"sexe","prenom","annee","nombre"

1,AARON,2000,118

1,ABBAS,2000,7

1,ABD,2000,6

1,ABD-ALLAH,2000,6

1,ABDALLAH,2000,68

1,ABDEL,2000,65

...

2,EMMA,2004,6634

2,EMMA-JANE,2004,3

2,EMMA-LISA,2004,4

2,EMMA-LOU,2004,10

2,EMMA-LOUISE,2004,4

2,EMMA-ROSE,2004,5

2,EMMANUELA,2004,5

2,EMMANUELLA,2004,21

2,EMMANUELLE,2004,219

...

Cela représente un tableau à quatre colonnes, comme leur nom l'indique. La colonne sexe vaut en fait 1 pour 
les garçons et 2 pour les filles (le fichier ne connait pas d'autre genre), la colonne prenom est en majuscule, la 
colonne annee est l'année de naissance et la colonne nombre le nombre de naissances avec ce prénom cette année.

Le fichier est ordonné avec d'abord les naissances de garçons de l'année 2000, puis les filles de 2000, puis les 
garçons de 2001, etc. Dans chacune de ces catégories, les prénoms sont classés par ordre alphabétique. Mais tout 
cela aura peu d'importance en pratique car nous traiterons le fichier à travers des boucles en Python ; il faut 
seulement se préoccuper du fait qu'un même prénom va revenir plusieurs fois, chaque année, éventuellement pour 
plusieurs sexes.

Il s'agit d'un fichier CSV, qui permet de représenter un tableau ou une base de données à la structure très 
simple, facile à traiter par l'ordinateur et dans une certaine mesure lisible par un humain : des colonnes décrites 
dans une en-tête, et dans chaque ligne les données correspondantes sont séparées par des virgules. Le mot CSV 
lui-même signifie Comma-Separated Values soit littéralement… « valeurs séparées par des virgules ». On ne s'est 
pas pris la tête pour trouver un nom ! On appellera chaque ligne une entrée de la table — ne pas confondre un 
prénom avec l'entrée toute entière.

Le code Python de démarrage ne fait qu'ouvrir ce fichier en utilisant la bibliothèque csv et le charge dans une 
grosse liste nommée liste :

>>> len(liste)

110604

La longueur est exactement un de moins que le nombre de lignes du fichier, à cause de l'en-tête.

Affichons un extrait en vrac de cette liste : par exemple, tout entre les indices 75 000 et 85 000 mais en sautant 
avec des pas de 1000 ce qui devrait afficher 10 prénoms :

BCPST1B 2025–2026
Lycée Hoche, Versailles

1/4 L.-C. LEFÈVRE



TP 17 Traitement de données en tables

>>> liste[75000:85000:1000]

[{'sexe': '1', 'prenom': 'DOAN', 'annee': '2007', 'nombre': '12'},

 {'sexe': '1', 'prenom': 'IONEL', 'annee': '2007', 'nombre': '3'},

 {'sexe': '1', 'prenom': 'LYESS', 'annee': '2007', 'nombre': '8'},

 {'sexe': '1', 'prenom': 'PIERRE-EMILE', 'annee': '2007', 'nombre': '6'},

 {'sexe': '1', 'prenom': 'VASCO', 'annee': '2007', 'nombre': '19'},

 {'sexe': '2', 'prenom': 'AUDELIA', 'annee': '2007', 'nombre': '6'},

 {'sexe': '2', 'prenom': 'ELUNA', 'annee': '2007', 'nombre': '3'},

 {'sexe': '2', 'prenom': 'JULIANE', 'annee': '2007', 'nombre': '81'},

 {'sexe': '2', 'prenom': 'LYDWINE', 'annee': '2007', 'nombre': '3'},

 {'sexe': '2', 'prenom': 'NATHALIE', 'annee': '2007', 'nombre': '81'}]

Comme chaque prénom a droit à sa propre entrée, une grande partie de cette liste est composée de prénoms 
rares, et toutes les variantes orthographiques ont aussi leur propre entrée ; les prénoms courant apparaissent une 
seule fois, mais avec une grande valeur pour la colonne nombre.

Chaque entrée de cette liste est nommée en Python un dictionnaire — nous y reviendrons dans un TP à part 
entière. Écrivons par exemple

>>> x = liste[46090]

>>> print(x)

{'sexe': '2', 'prenom': 'EMMA', 'annee': '2004', 'nombre': '6634'}

alors on accède au prénom correspondant par x["prenom"], à l'année par x["annee"] et de même pour les deux 
autres colonnes :

>>> x["sexe"]

'2'

>>> x["prenom"]

'EMMA'

>>> x["annee"]

'2004'

>>> x["nombre"]

'6634'

Cela se passe comme si chaque entrée était une petite liste, dont les indices ne sont pas des nombres mais sont 
les noms des colonnes avec lesquelles nous travaillons.

En fait on traitera tout le sujet en itérant directement sur la liste for x in liste car il ne sera pas nécessaire 
de connaitre l'indice du prénom dans la liste totale. Cela simplifie aussi les notations.

Quelques dernières remarques :

• Respectez les majuscules et les accents, dans les prénoms comme dans les intitulés de nos colonnes, cela a 
son importance. Les noms des colonnes sont en minuscule et sans accents. Chaque orthographe de prénom a 
sa propre entrée ; ils sont tous en majuscule. Certains comportent leurs accents, d'autres pas. Il semble que 
seuls les prénoms avec au moins 3 naissances apparaissent.

• Toutes les données présentes sont des chaînes de caractères, de type str, y compris quand elles représentent des 
nombres entiers. Pour accéder au nombre correspondant au prénom x il faut donc écrire int(x["nombre"]). 
Quant aux années, tant qu'on ne fait pas de calculs dessus, on peut les garder de type str, mais alors 
quand on donne une année il faut bien la mettre entre guillemets. Ainsi il faudra écrire des choses telles que 
if x["annee"] == "2007". Le sexe lui est soit "1" soit "2".

• De nombreuses fonctions cherchent des prénoms en filtrant selon la valeur de annee ou de sexe. Ce n'est pas 
une très grosse contrainte (on pourrait enlever ces filtres), car cela revient à ajouter des conditions if dans 
les boucles.

BCPST1B 2025–2026
Lycée Hoche, Versailles

2/4 L.-C. LEFÈVRE



TP 17 Traitement de données en tables

II Explorer et compter

Au tout début nous explorons le fichier et ce qu'il contient.

Exercice 1
Écrire une fonction cherche(prenom) qui prend en argument un prénom, parcourt toute la liste, et si le prénom 
est trouvé, affiche toute l'entrée correspondante.

Testez-la sur votre prénom, bien entendu, et observez un peu la liste.

Exercice 2
Écrire une fonction nombre(prenom, annee, sexe) qui prend en argument un prénom, une année et un sexe, 
et qui si elle trouve le prénom dans la liste, renvoie le nombre de fois où il a été donné.

Exercice 3
Écrire une fonction nombre_de_prenoms(annee, sexe) qui compte le nombre total de prénoms donnés (au 
sens de la diversité des prénoms, sans tenir compte de combien de personnes le portent) pour l'année et le sexe 
passés en argument.

Maintenant il faut compter en utilisant la colonne nombre. Attention à bien convertir en int les valeurs lues !

Exercice 4
Écrire une fonction nombre_avec_le_prenom(prenom) qui prend en argument un prénom et renvoie le nombre 
de fois où il a été donné, sur toutes les années et éventuellement sur les deux sexes (c'est le nombre de personnes 
portant ce prénom néss sur cette période).

Exercice 5
Écrire une fonction total_naissances(annee, sexe) qui prend en argument une année, et qui renvoie le 
nombre total d'enfants nés, sur l'année et le sexe donnés.

III Représenter graphiquement

La fonction plt.bar(X, Y) de la bibliothèque matplotlib.pyplot permet de tracer un diagramme en barres 
qui sera bien adapté à afficher le nombre de fois qu'un prénom a été donné chaque année. La liste X sera celle des 
années à mettre en abscisses (dans un diagramme en barres, cela peut être des valeurs numériques ou bien des 
mots quelconques) et la liste Y sera celle des nombres de naissances. La documentation ou les aide-mémoires de 
Matplotlib permettent d'améliorer un peu l'aspect du graphique : titre avec plt.title(), noms des axes avec 
plt.xlabel() et plt.ylabel(), couleurs des barres etc.

Il faut donc créer une liste indiquant combien de fois le prénom a été donné, chaque année.

Exercice 6
1. Écrire une fonction liste_nombres(prenom, sexe) qui renvoie une liste L où L[i] est le nombre de fois 

où le prénom a été donné l'année 2000 + 𝑖, par sexe donné.

2. Écrire une fonction barre(prenom, sexe) qui affiche un diagramme en barres du nombre de fois qu'un 
prénom a été donné en fonction de l'année, avec le sexe donné.

IV Filtrer

Les premières questions sont une simple révision.

BCPST1B 2025–2026
Lycée Hoche, Versailles

3/4 L.-C. LEFÈVRE



TP 17 Traitement de données en tables

Exercice 7
1. Écrire une fonction maximum(annee, sexe) qui renvoie le prénom (on a besoin de l'entrée complète) le 

plus donné, par année et par sexe.

2. Écrire une fonction prenoms_au_moins(seuil, annee, sexe) qui renvoie la liste de tous les prénoms (les 
entrées complètes) qui sont donnés au moins autant de fois que la valeur seuil passée en argument, par 
année et par sexe.

3. Écrire une fonction maximum2(annee, sexe) qui renvoie le couple formé par le prénom le plus donné et le 
deuxième plus donné.

Notre but serait d'avoir le TOP 10 (plus généralement, TOP 𝑛) des prénoms les plus donnés, par année et 
par sexe. Ce n'est pas beaucoup plus simple à programmer qu'un algorithme de tri : l'idée naturelle est une 
combinaison entre la fonction maximum2 ci-dessus et l'algorithme du tri par insertion. On part d'une liste L égale 
à [None] * 10, puis on itère sur la liste de tous les prénoms. La liste L doit contenir le TOP 10 des prénoms lus 
jusque là, dans l'ordre, éventuellement elle se termine par des None. Chaque fois qu'on lit un prénom x, on essaie 
de l'insérer dans L, en parcourant L depuis la fin : si x est donné plus de fois que le dernier élément de L, on 
remplace ce dernier élément par x, puis on l'échange encore avec l'élément précédent jusqu'à ce que L soit bien 
rangée en ordre.

Exercice 8 (*)
Écrire la fonction top10(annee, sexe) qui renvoie la liste du TOP 10 des prénoms les plus donnés, sur l'année 
et le sexe.

V Choisir le prénom

On s'intéresse enfin au choix du prénom au hasard. Dans cette section on ne s'occupe pas des années ni des sexes 
(mais on peut toujours le rajouter ensuite). La fonction randint(a, b), du module random, donne un nombre 
aléatoire entre les bornes 𝑎 et 𝑏 (bornes incluses).

Mais on ne veut pas simplement choisir une entrée de la liste au hasard : on voudrait choisir un prénom de façon 
proportionnelle à sa fréquence d'apparition. Cela nécessite donc d'abord de compter le nombre de naissances 
totales, appelons le 𝑁 . Ensuite on tire au hasard un nombre entre 1 et 𝑁 . L'idée à traduire dans un algorithme, 
qui parcourt toute la liste est la suivante…

Imaginons qu'un premier prénom soit donné 3 fois, un deuxième est donné 8 fois, et le dernier est donné 2 fois. 
Cela fait 13 naissances, on prend un nombre au hasard entre 1 et 13. Alors on veut choisir le premier prénom si 
le nombre tiré est 1, 2, 3 ; le deuxième si le nombre tiré est entre 4 et 11 ; et le troisième si le nombre tiré est 12 
ou 13. Autrement dit dans une boucle on a besoin de compter les cumuls de naissances, et comparer le cumul 
avec le nombre tiré au hasard : dès que le cumul dépasse notre nombre choisi, on s'arrête et on considère qu'on 
choisit ce prénom !

Exercice 9
1. Écrire une fonction choix_prenom() qui choisit un prénom au hasard par cette méthode, et renvoie le 

prénom.

2. Écrire une fonction choix_groupe(n) qui renvoie une liste de 𝑛 prénoms choisis au hasard selon cette 
méthode, et observez par exemple en générant toute une classe de 30 élèves !

On peut au contraire vouloir choisir un prénom rare, où rare signifie par exemple donné moins de 10 fois (le 
seuil est au choix). Cette fois, peu importe que la probabilité soit proportionnelle à la fréquence d'apparition du 
prénom ; mais il faut tout de même d'abord bien compter à l'avance les prénoms rares.

Exercice 10
Écrire la fonction choix_prenom_rare(seuil), et créer une liste de 30 prénoms rares, donnés moins de seuil 
fois.

BCPST1B 2025–2026
Lycée Hoche, Versailles

4/4 L.-C. LEFÈVRE


	I Introduction
	II Explorer et compter
	III Représenter graphiquement
	IV Filtrer
	V Choisir le prénom

