TP 16
Manipulation d'images

Nous allons maintenant apprendre a manipuler les images. Les possibilités sont tres larges et, en un seul TP,
nous n'aurons qu'un petit apercu du sujet. C'est aussi une tres bonne idée d'utiliser ces méthodes pour le TIPE !

La premiere chose a faire est de récupérer le fichier materiel.zip. Il contient, en plus de deux versions d'un
fichier .py a compléter, une certaine bibliotheque de photos pour le TP. Ouvrir le fichier en version niveaux de
gris (pour l'instant) et exécuter au moins les deux premieres cellules. Si tout se passe bien, une image en noir et
blanc s'affiche.

I Introduction

I.1 Représentation d'images

Une image en couleurs a n lignes et p colonnes est manipulée par 1'ordinateur comme un tableau. Chaque case du
tableau s'appelle un pixel et contient en fait trois nombres pour former une petite case de couleur : le premier
indique l'intensité de la couleur rouge, le deuxiéme de la couleur vert, et le troisieme de la couleur bleu. On
parle de codage RGB (Red, Green, Blue). Comme cela est un peu compliqué nous travaillons d'abord avec
des images en niveau de gris auquel cas chaque pixel est représenté par un simple nombre qui indique la
luminosité du pixel.

Plus précisément, nous utilisons la bibliotheque Numpy ainsi que PIL. Le code préparé charge une image avec PIL
dont le nom est donné dans la variable fichier puis forme un tableau Numpy nommé image a deux dimensions,
la premiere correspondant aux lignes et la seconde aux colonnes. Chaque pixel est codé sur un octet, soit 8 bits.
Cela donne 256 valeurs possibles, tous les entiers entre 0 et 255. Ainsi la valeur de image[i, j] est O si le pixel
de la ligne ¢ colonne j est tout noir, 255 si le pixel est tout blanc, et les valeurs intermédiaires correspondent a
des niveaux de gris. Le type des données du tableau est uint8 (entier, sans signe, sur 8 bits). Comme d'habitude,
si I'image a n lignes et p colonnes alors les lignes sont numérotées de 0 a n — 1, les colonnes de 0 & p — 1, ainsi le
pixel (0,0) est le plus en haut & gauche et (n —1,p — 1) le plus en bas a droite.

X[1, 0] X[1, 1] X[1, p-1l
X[n-1, 0] X[n-1, 1] X[n-1, p-1]

Si on travaille avec des couleurs, alors la variable image est un tableau & trois dimensions, image[i, j, 0] est
l'intensité du rouge dans le pixel (4, j), image[i, j, 1] l'intensité du vert et image[i, j, 2] du bleu. La variable
image . shape est un tuple de longueur 2 (sans couleurs) ou 3 (couleurs) et dans tous les cas image.shape[0] est
le nombre de lignes et image . shape[1] le nombre de colonnes. La fonction np.zeros((n, p)) (noir et blanc) ou
np.zeros((n, p, 3)) (couleurs) est donc utilisée pour créer une image vierge de n lignes et p colonnes remplie
de zéros, c'est a dire une image toute noire.

Vérifiez cela a tout moment apres avoir chargé l'image :

>>> image
>>> image.shape
>>> image.dtype

Remarque. 11 existe aussi des images ou chaque pixel contient quatre nombres : en plus des composantes RGB
la derniere se nomme canal alpha et correspond a un niveau de transparence.

I.2 Choix des images

Le dossier contient également un certain échantillon d'images. Vous pouvez choisir celle que vous voulez,
idéalement en gardant la méme pour toute la durée du TP (mais on pourra a n'importe quel moment copier-

BCPST1B 2025-2026 1/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 16 Manipulation d'images

coller le code de chargement d'image pour tester avec d'autres). Les images sélectionnées réunissent quelques
critéres : elles sont redimensionnées a une taille raisonnable (au maximum 400 pixels de c6té) alors qu'une image
directement sortie d'une caméra moderne va contenir des millions de pixels et le programme sera lent a les traiter ;
on apprécie aussi d'avoir un objet ou paysage qui se détache nettement du décor, y compris en noir et blanc.

Avertissement

Quelques avertissements préalables. Utiliser une image trouvée sur internet pour un travail scolaire
ou universitaire, ou pour la rediffuser, sans en avoir 1'autorisation est considéré comme une faute
grave. Il est donc nécessaire de s'intéresser aux droits de 1'image, et de faire un usage strictement privé des
images trouvées.

Les images présentes sur Wikipedia par exemple ont souvent une licence qui autorise a les ré-utiliser, voire

les modifier, et les rediffuser (licence Creative Commons faites pour encourager le partage) mais toujours en

citant proprement la source de la photo. Autant que possible, dans vos travaux, utilisez vos propres photos

et créez vous-méme vos propres illustrations, et méme si elles ne sont pas aussi belles cela sera certainement
\valorisé et valorisant !

Avertissement

Les photos proposées ici sont des photos personnelles et 1'autorisation vous est donnée de les utiliser
pour ce TP, mais pas de les rediffuser librement.

I.3 Principes généraux

Les fonctions regoivent toutes en argument un tableau nommé X représentant une image. Elles ne doivent pas
modifier I'image elle-méme mais en faire soit une copie soit une nouvelle image vierge, nommeée Y. Ensuite, c'est
le mécanisme de la double boucle for qui permet d'effectuer une opération sur chaque pixel, un par un :

for i in range(n):
for j in range(p):
opération sur le pizel ligne % colonne j
Yii, jl = ... X[i, jl

La variable image est globale pour tout le fichier, et si on veut changer d'image, il faut soit ré-exécuter toute
la cellule qui charge image, soit recopier le code la ot on en a besoin. Quelques autres fonctions déja prétes
permettent d'afficher 1'image, voire d'en afficher deux 1'une sur 'autre pour bien les comparer, et de sauvegarder
le résultat. A vous de le tester.

Un dernier petit avertissement : les opérations sur les coefficients se font dans des entiers non-signés 8 bits, sur
lesquels les valeurs au-dela de 255 reviennent a 0. Cela force parfois a tester avant un calcul si le résultat va
dépasser ou non 255.

IT Forme de l'image

Les premieres fonctions que 1'on veut coder sont le miroir horizontal et le pivotement de 90 degrés vers la droite.

La question qu'il faut se poser au brouillon est : si on prend une image X et qu'on veut en former l'image miroir
Y, alors quel pixel de X va dans le pixel de coordonnées (i,j) de Y ? Vérifier au brouillon que c'est bien celui de
coordonnées (i,p — 1 — j), qui est sur la méme ligne, mais sur la colonne symétrique par rapport a la verticale.

Exercice 1
Ecrire la fonction miroir (X) qui renvoie une image obtenue a partir de X par miroir horizontal.

On poursuit avec la fonction qui pivote de 90 degrés vers la droite. La encore il s'agit d'abord de trouver au
brouillon : quel pixel de X va aller dans Y[i, j] ? On prendra garde aux dimensions de Y cette fois ! La réponse
est la bonne combinaison des ¢, j, n —1—1¢, p—1— 3.

BCPST1B 2025-2026 2/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 16 Manipulation d'images

Exercice 2
Ecrire la fonction pivote(X) qui retourne une image obtenue & partir de X par rotation de 90 degrés sur
la droite.

III Eclairage

Pour augmenter 1'éclaircissement d'une image, il suffit d'ajouter a chaque pixel une valeur fixe, par exemple 50
(l'effet sera bien visible, mais on pourra ajuster cette valeur plus tard). En effet la luminosité d'un pixel est
un nombre entre 0 et 255, donc les augmenter tous de la méme fagon ne pourra qu'augmenter la luminosité de
I'image. Attention, il ne faut pas seulement ajouter 50 : si le résultat de l'addition dépasse 255 (la luminosité
maximale d'un pixel), on laissera le résultat a 255. En général, on donne une valeur fixe de décalage b et on veut
augmenter tous les pixels de la valeur b.

Exercice 3
Ecrire la fonction eclaircit(X, b) qui éclaircit 1'image X en augmentant tous les pixels de la valeur b.

Une autre opération intéressante et trés simple a programmer est le seuillage. 11 s'agit de fixer une valeur s de
seuil (typiquement s = 127 pour commencer) et de remplacer les pixels soit par 0 (une case noire) si la valeur est
inférieure a s, soit par 255 (case blanche) si la valeur est supérieure a s. Cela doit plus ou moins faire apparaitre
des formes, surtout sur les objets sombres se détachant bien d'un fond clair. Tester la fonction avec différentes
valeurs du seuil.

Exercice 4
Ecrire la fonction seuillage(X, s) qui effectue cette opération, avec le seuil s, et tester avec différentes
valeurs du seuil.

Le seuillage est un cas simplifié de 1'opération de changer le contraste. Augmenter le contraste, c'est augmenter
la luminosité sur les pixels déja bien lumineux, et diminuer la luminosité de ceux déja sombres. Pour cela, on
a besoin d'une fonction f : [0,255] — [0,255] qui « tasse » les petites valeurs vers 0 ainsi que les grandes valeurs
vers 255 (si z est petit alors f(z) < x, si x est grand alors f(z) > x), une fonction dont le graphe ressemble a
ceci :

f(z)

250

//l
/,/l
150 5
100 AL
//l
50 .

50 100 150 200 250

On propose pour cela la fonction
f:10,255] — [0, 255]

jz si0<a<96
T 24+ 3 (2 —96) si96 <z <160
232 + 1(z —160) si 160 < z < 255

Remarque. 1l s'agit bien d'une fonction continue, c'est-a-dire que les valeurs en 96 et en 160 calculées avec
chacune des deux formules possibles coincident. C'est méme une fonction affine par morceauz.

BCPST1B 2025-2026 3/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 16 Manipulation d'images

Il est facile de produire de tels exemples en décidant par quels points le graphe passe, ou avec quel pente : un
morceau de fonction affine est défini uniquement par deux points de passage, ou bien par un point et une pente.
Ici f est 1'unique fonction découpant 1'intervalle [0, 255] en trois morceaux de tailles 96, 64, 96 (soit les fractions
3/8,1/4, 3/8 de 255) avec les pentes 1/4 au début et a la fin.

p
Exercice 5
\Ecrire la fonction contraste(X) qui augmente le contraste de 1'image X selon le procédé décrit.

Enfin pour obtenir le négatif d'une image, c'est comme son nom l'indique une simple inversion entre les pixels
lumineux et les pixels sombres : la luminosité z d'un pixel deviendra 255 — x dans 1'image négative.

Exercice 6
Ecrire la fonction negatif (X) qui donne le négatif de 1'image X selon ce procédé.

IV Flou

On se propose de flouter une image. L'idée est la suivante : chaque pixel sera remplacé par une moyenne des pixels
autour de lui, mais pas n'importe comment. On utilisera un coefficient pour que les pixels plus proches comptent
plus. La régle simple a programmer qu'on propose est : un pixel lui-méme compte avec un coefficient 3, les quatre
pixels sur ses cOtés comptent avec un coefficient 2 et les quatre pixels qui le touchent en diagonale comptent avec
un coefficient 1. Le total des coefficients fait donc 15. On représente cette opération par le tableau :

X[i-1, j-11 | X[i-1, j1 | X[i-1, j+1] 11211
X[i, j-11 X[i, j] X[i, j+1] 2132
X[i+1, j-11 | X[i+1, §1 | X[i+1, j+1] 11211

Avec cette méthode on ne peut pas traiter correctement les pixels sur les bords, ceux pour lesquels il n'y a pas
de pixel voisin a gauche par exemple. Dans un premier temps on n'y touche pas, l'image Y est initialisée & une
copie de X et donc les pixels sur les bords ne sont pas floutés. Si on est courageux, la seule fagon naturelle est
de tronquer ce tableau mais alors il faut distinguer des cas selon la position du pixel de bord : par exemple si le
pixel est sur le bord gauche mais pas dans les coins, il faut prendre la moyenne sur le pixel de droite, les deux
au-dessus, et les deux diagonales haut-droite et bas-droite ; le total des coefficients est alors de 11.

p
Exercice 7
\Ecrire la fonction flou(X) qui floute l'image X selon ce procédé.

Remarque. Le tableau de coefficients ci-dessus s'appelle matrice de convolution. De nombreuses fonctions
différentes de flous ou d'autres types de traitements d'images peuvent étre obtenues en considérant une moyenne
d'un plus grand nombre de pixels autour du pixel central et en faisant varier les coefficients. Un cas connu des
graphistes est le flou gaussien dans lequel les poids accordés aux pixels voisins suivent une loi gaussienne en
fonction de la distance au pixel central, dont on peut facilement faire varier la largeur. Ainsi plus la gaussienne
est large, plus la moyenne est effectuée sur un grand nombre de pixels et plus l'effet de flou est fort ; a l'inverse,
si la gaussienne est tres resserrée alors le pixel central garde beaucoup plus d'importance que les autres et le
flou est léger.

Remarque. Des idées similaires au flou permettent d'écrire des fonctions qui rétrécissent ou agrandissent une
image. Dans un cas il s'agit de diviser le nombre de pixels, par exemple pour diviser les dimensions par deux il
faut remplacer des carrés de quatre pixels par un seul pixel obtenu avec une valeur moyenne des quatre autours.
Dans le second cas, par exemple pour multiplier les dimensions par deux il s'agit de remplacer chaque pixel par
un carré de quatre pixels et utilisant la moyenne des pixels voisins pour lisser 1'image.

BCPST1B 2025-2026 4/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 16 Manipulation d'images

IV.1 Contours

On s'intéresse maintenant au probleme de la détection de contours. Il s'agit en quelque sorte de 1l'inverse du
flou : quand deux pixels voisins ont des intensités différentes, il s'agit peut-étre du contour d'un objet et on veut
accentuer cette différence ; au contraire si les intensités sont déja proches il s'agit simplement de la variation
continue d'une méme zone (par exemple le ciel) et on veut effacer cette différence. On commence donc par calculer
la moyenne pondérée des pixels voisins selon la régle suivante :

—1|—1}|—-1
-1/ 8 |—1
—1|—-1|-1

Si les pixels d'une zone ont des intensités proches, cette moyenne va étre proche de zéro. Au contraire, la valeur
va étre tres élevée si le pixel central a une intensité nettement différente de celle de ses voisins. On choisit donc
une valeur de seuil s, et si la moyenne (en valeur absolue) dépasse le seuil on mettra le pixel a 0 (tout noir) et
sinon a 255 (tout blanc).

p
Exercice 8
Ecrire la fonction contours(X, s) qui renvoie une image en noir et blanc (seulement les couleurs 0 et 255)
\détectant les contours de l'image X avec le seuil donné s. Tester avec différents seuils.

Remarque. En pratique, une détection automatique de contours capable de reconnaitre des formes et de les
mesurer précisément se fait en de nombreuses étapes : d'abord un éventuel pré-traitement pour lisser 1'image,
puis une détection des contours comme ici, éventuellement avec un seuil qui s'ajuste automatiquement selon la
proportion des pixels qu'on veut garder ; puis éventuellement un post-traitement pour délimiter bien précisément
des contours et des zones, et enfin on peut marquer nettement les régions dessinées.

V Mettez de la couleur dans votre vie !

Le fichier a compléter se trouve dans une autre variante pour traiter les images en couleur. La variable image est
un tableau Numpy de forme (n, p, 3).

Pour traiter les images, il faut alors une double boucle qui effectue les opérations sur chacune des composantes
de l'image, c'est-a-dire X[1, j, 0], X[i, j, 1] et X[1i, j, 2].

En fait, on peut aller un peu plus vite. Pour chaque indice (i, j), alors image[i, j] est considéré lui-méme comme
un tableau Numpy a une seule dimension et de taille 3. Ainsi les opérations que nous effectuons sur des pixels —
par exemple la fonction négatif qui fait simplement 265 - X[i, j] — peuvent s'effectuer sur X[i, j] en tant
qu'opération vectorielle et donc sur chacune de ses 3 composantes d'un coup. Certaines fonctions marchent donc
directement, sans modification, sur les images en couleurs.

Exercice 9
Tester (avec un copier-coller vers le fichier a compléter en couleurs) et éventuellement adapter les fonctions
précédentes en couleur.

Une fonction intéressante a adapter qui cette fois-ce manipule réellement les trois couleurs :

Exercice 10

Ecrire une fonction seuillage(X, a, b, c) qui effectue un seuillage séparément sur chacune des couleurs :
dans le rouge, l'intensité du la couleur sera comparée a a et le pixel sera mis soit & 0 (noir) soit a 255 (rouge
pur), de méme b sera le seuil de vert et ¢ le seuil de bleu. A la fin I'image est constituée uniquement de noir,
de blanc, rouge pur, vert pur, bleu pur, et des combinaisons de ces couleurs.

Enfin la derniére opération est amusante, testez-1a sur diverses images !

BCPST1B 2025-2026 5/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 16 Manipulation d'images

-

au total).
_

N
Exercice 11

Ecrire une fonction fusion (X1, X2) qui fusionne les deux images, c'est a dire que chaque pixel (7, j) du résultat
sera la moyenne des pixels (7, j) de chacune des deux images. Puis tester avec deux images choisies parmi celles
proposées, en recopiant deux fois le code qui permet d'ouvrir un fichier image.

Cela nécessite d'abord que les deux images soient exactement de la méme taille ; sinon, il faut fusionner en
coupant les images sur la plus petite des largeurs et la plus petite des hauteurs. Ou alors, écrire une fonction
qui fusionne un rectangle découpé dans X2, défini par les coordonnées de son coin haut-gauche et par ses
dimensions, dans un rectangle de X1 défini lui aussi par les coordonnées de son coin haut-gauche (6 parametres

VI Pour aller plus loin

En vrac, quelques pistes d'améliorations a tester vous-méme :

o Vérifier que toutes les fonctions marchent bien en couleur, et les corriger si besoin.
o Expérimenter avec plusieurs images différentes, éventuellement avec vos propres images.

e Manipuler des images de taille différente, par exemple pour la fusion, ou assembler plusieurs images en
mosaique. Cela nécessite quelques calculs d'indices dans un tableau.

e Sauvegarder son image en l'enregistrant, avec les fonctions déja écrites dans le fichier joint qui font appel
a PIL.Image.fromarray (convertit le tableau Numpy en image) et PIL.Image.save (enregistre un fichier
image).

o Vectorialiser les opérations en utilisant toute la puissance de Numpy pour que 1'exécution soit plus rapide,
c'est a dire éliminer totalement les doubles boucles mais raisonner avec les opérations vectorielles. Sans
vectorialisation, certaines fonctions sont bien trop lentes sur des images de grande taille.

BCPST1B 2025-2026 6/6 L.-C. LEFEVRE
Lycée Hoche, Versailles

	I Introduction
	I.1 Représentation d'images
	I.2 Choix des images
	I.3 Principes généraux

	II Forme de l'image
	III Éclairage
	IV Flou
	IV.1 Contours

	V Mettez de la couleur dans votre vie !
	VI Pour aller plus loin

