TP 15
Matrices

L'objectif de ce TP est tout simplement d'apprendre & manipuler des matrices en Python, a la fois les représenter
en Python et programmer quelques opérations usuelles dessus.

Nous avons déja vu que la bibliotheque Numpy permettait de traiter des tableaux de toute sorte, et s'applique
donc aux matrices. En fait, toutes les fonctions que nous allons écrire ici se trouvent déja intégrées dans numpy
ainsi que dans son sous-module numpy.linalg, et il faudra continuer a apprendre a les utiliser. Cependant pour
notre apprentissage actuel nous allons prendre une autre approche et nous allons programmer toutes ces fonctions
sans autre pré-requis que les listes Python.

I Préliminaires

I.1 Définir des matrices

Les matrices que nous allons manipuler en Python seront enregistrées comme des listes de listes et plus
précisément comme la liste de leurs lignes. Par exemple la matrice

17 4
A=|6-25 -3

~N & o
O ot 3

sera représentée en Python par
A= [[8’ _1’ 7: 4]’ [6’ _2, 5’ _3], [7’ 2’ O’ 7]]

Cela est en quelque sorte une convention : on pourrait trés bien décider de travailler en donnant la liste des
colonnes. Mais cela est bien pratique ! En effet dans notre exemple A[0] désigne en fait le premier élément de la
liste (de listes), donc la liste [8, -1, 7, 41, et ainsi A[0] [0] (c'est la méme chose que s'il y avait des parenthéses :
(A[0]) [0]) est 1'élément 8, et A[0] [1] est donc 1'élément -1 etc. De méme A[1] est toute la deuxiéme ligne
(6, -2, 5, -3] et donc A[1]1[0] = 6,A[1][1] = -2, A[1] [2] = 5. Ainsi le coefficient d'indice (¢, j) est A[i] [j]
... a condition de, contrairement & la convention mathématique, numéroter les indices & partir de 0 !

Exercice 1

A partir de la fonction len(), comment obtient-on le nombre de lignes et de colonnes de la matrice A ? Ecrire
la fonction taille(A) qui renvoie un couple formé du nombre de lignes (toujours noté n) et du nombre de
colonnes (toujours p).

Pour utiliser la fonction précédente, on pourra écrire des fonctions qui commencent par (n, p) = taille(A) ce
qui récupere le tuple des dimensions de A. Le premier indice, qu'on appellera souvent 7, sera l'indice des lignes et
variera de 0 a n — 1 (cela différe de la convention mathématique mais pose peu de problémes en pratique) et le
deuxiéme indice, qu'on appellera souvent j, sera celui des colonnes et variera entre 0 et p — 1.

1.2 Créer des nouvelles matrices

Nous aurons besoin de pouvoir créer des nouvelles matrices de taille donnée, et en particulier d'avoir une fonction
matrice_nulle(n, p) qui crée une nouvelle matrice a n lignes et p colonnes remplie de zéros.

L'idée la plus simple pour créer par exemple une nouvelle matrice & 3 lignes et 4 colonnes serait d'écrire

>>> A = [[0] * 4] * 3
>>> print (A)
(o, o, o, ol, o, o, o, ol, [0, 0, 0, 01]

ainsi les listes a l'intérieur sont de taille 4 remplies de zéros, et on les répete 3 fois.

Malheureusement, cela pose un petit probleme...

BCPST1B 2025-2026 1/5 L.-C. LEFEVRE
Lycée Hoche, Versailles



TP 15 Matrices

>>> A[0] [0] = -1
>>> print (A)
[[_1; O: O: O]> [_1, O: O: 0]; [_1, O, O: O]]

En fait, la syntaxe ci-dessus crée bien une ligne [0] * 4 de zéros, puis ne recopie pas la ligne mais uniquement
la référence a cette ligne. Les trois lignes de A deviennent des références a la méme liste [0, 0, 0, 0], ainsi
toute modification sur une ligne provoque une modification sur l'autre ligne. L'auteur de ce TP s'est lui-méme
fait piéger lors de son apprentissage de Python.

La syntaxe des listes en compréhension, elle, permet toujours de créer des nouvelles listes « fraiches» (sans
dépendance entre les éléments). On utilisera donc la syntaxe

>>> A = [[0 for _ in range(4)] for _ in range(3)]

qui crée une liste de quatre zéros (on dira «a l'intérieur »), puis répete cela trois fois. Plus généralement, on
donne la fonction suivante qui crée une matrice nulle de dimensions (n,p) :

def matrice_nulle(n, p):

return [[0 for _ in range(p)] for _ in range(n)]

De méme, on fera attention & ce qu'écrire B = A ne crée pas une copie de A mais copie seulement la référence, et
toutes les modifications de B vont alors affecter A. Pour écrire nos fonctions ce n'est en général pas le comportement
voulu, donc nous commencons toujours par créer une nouvelle matrice nulle toute fraiche que nous remplissons
au fur et a mesure.

Enfin, rappelons que l'outil essentiel pour parcourir une matrice et effectuer une opération sur chaque coeflicient
un par un est la double boucle, une syntaxe telle que :

for i in range(n):
for j in range(p):

B[il[j] = ... A[il[j]

Plus précisément, ici elle parcourt les lignes et, pour chaque ligne, parcourt les colonnes. Si on échange 1'ordre
des deux boucles, alors on parcourt les colonnes et, pour chaque colonne, toutes les lignes. Dans la plupart
des fonctions de la partie II cet ordre de parcours n'a pas d'importance car de toute facon il faut effectuer les
opérations sur tous les coefficients.

II Exercices

Toutes les fonctions sont a compléter dans le fichier ci-joint. Elles commencent par récupérer la taille des matrices
données en argument, éventuellement vérifier la compatibilité des tailles pour les opérations & effectuer, puis elles
créent une nouvelle matrice pour contenir le résultat, et la remplissent peu a peu.

I1.1 Créer des matrices

e . B

Exercice 2
\Ecrire la fonction identité(n) qui crée la matrice identité de taille n. )
~

Exercice 3
Ecrire la fonction diagonale (L) qui prend en argument une liste (simple) de coefficients et qui crée une matrice
diagonale, en placant les coefficients donnés dans L sur la diagonale.

300
Par exemple, on veut que l'appel diagonale([3, 5, 7]) produise la matrice (0 5 0) .
L 007 )
BCPST1B 2025-2026 2/5 L.-C. LEFEVRE

Lycée Hoche, Versailles



TP 15 Matrices

II.2 Opérations sur les matrices

s : N
Exercice 4
\Ecrire la fonction somme (A, B) qui calcule la somme des matrices A et B. )
s : N
Exercice 5
Ecrire la fonction produit_constante(A, a) qui calcule la matrice aA (ou a est un nombre réel et A est une
matrice).
N J
: N
Exercice 6
1. Ecrire la fonction coeff produit(A, B, i, j) qui calcule le coefficient d'indice (i,j) du produit de
matrices AB.
2. En déduire la fonction produit (A, B) qui calcule le produit de matrices AB.
\3. Bonus : pouvez-vous écrire directement la fonction produit, sans fonction intermédiaire ? )
s : N
Exercice 7
Ecrire la fonction puissance(A, N) qui calcule la puissance AN (ot N est un entier positif). On rappelle
que AY est la matrice identité (de la méme taille que A) et que AN = A - A"~1. On pourra choisir entre une
\méthode itérative et une méthode récursive... )

Remarque. Ici plus encore, l'algorithme des puissances rapides (TP 10 : Récursivité, exercice 5) est particulie-
rement important ; on rappglle que celui-ci consiste & écrire AV = (AN / 2)2 si N est pair et AV = AAN~! sinon,
par exemple A% = ((A2)2) se calcule avec seulement 3 multiplications de matrices. En effet un produit de
matrices est toujours une opération lourde, nécessitant beaucoup de calculs de produits de coefficients entre eux

puis de sommes, et les matrices utilisées pour modéliser finement des phénomenes physiques peuvent avoir des
milliers de coefficients. Il est donc crucial de calculer des puissances en minimisant le nombre d'opérations de

produits de matrices qu'on va effectuer.

II.3 Quelques tests

e . B

Exercice 8
\Ecrire une fonction est_diagonale(A) qui renvoie True si la matrice A est diagonale, et False sinon. )
~

-
Exercice 9
Ecrire une fonction est_triangulaire_supérieure(A) qui renvoie True si la matrice A est triangulaire

\supérieure, et False sinon.

)

IIT Le pivot de Gauss

L'objectif ultime serait d'écrire un programme capable de calculer 1'inverse d'une matrice, ou du moins dans u
premier temps d'échelonner une matrice en appliquant 1'algorithme du pivot de Gauss. On obtiendra le rang a
passage.

n
u

Cela nécessite tout d'abord de programmer les opérations élémentaires. Pour pouvoir ré-utiliser facilement les
fonctions, cette fois nous avons besoin qu'elles modifient la matrice passée en argument au lieu de créer une

nouvelle copie.

BCPST1B 2025-2026 3/5 L.-C. LEFEVRE

Lycée Hoche, Versailles



TP 15 Matrices

s : ~
Exercice 10

Ecrire les fonctions suivantes, prenant en argument une matrice A et qui modifient directement la matrice
(sans en créer une nouvelle) :

1. échange(A, i, j) : échange les lignes i et j de A (opération L; <> L;).

2. combinaison(A, a, i, b, j) : opération L; < aL,; + bLj.

(3. dilate(A, a, i) :opération L; < al;. )

Avant de passer a l'échelonnage, il reste une fonction manquante qu'on écrira & part : celle pour l'étape de
recherche d'un pivot. En effet, quand on échelonne une matrice, la seule opération qui n'est pas completement
automatique est celle ou on choisit une ligne qu'on va échanger avec la ligne sur laquelle on travaille pour éliminer
une variable x. Ala main, on choisit une ligne contenant devant z; un coefficient sympathique (c'est-a-dire 1).
En général, la seule contrainte importante est que ce coefficient soit non-nul, sinon on ne peut pas l'utiliser pour
éliminer x; dans les autres lignes. Et s'il n'y a aucun coefficient non-nul devant z;, c'est que la variable z; a déja
été éliminée !

On a donc besoin d'une fonction qui, en partant d'indices donnés (7, j), cherche un coefficient non-nul dans la
colonne et en dessous a partir de ce coefficient, et renvoie 1'indice de ligne ou elle 1'a trouvé, et None si elle n'en
trouve pas ; et on a besoin que les fonctions qui utilisent celle-ci vérifient si le résultat est bien un indice ligne ou
bien est None.

Exercice 11

Ecrire une fonction cherche_pivot (A, r, j) qui cherche l'indice ligne d'un coefficient non-nul dans la colonne
j et dans les lignes d'indice ¢ > r de A. Si elle en trouve un, elle renvoie 1'indice de la ligne du pivot trouvé.
Sinon, elle renvoie None.

Tout est prét pour appliquer le pivot de Gauss !

p
Exercice 12 (*)
Ecrire une fonction échelonne (A) qui échelonne la matrice A.

Le programme peut se décrire ainsi :

e On démarre avec une boucle principale for portant sur l'indice j des colonne, et on initialise aussi un
indice r a 0 pour les lignes. Ces deux indices ne jouent pas le méme role : a chaque étape on va toujours
passer a la colonne suivante, par contre, on va passer a la ligne d'en-dessous seulement si on a bel et bien
trouvé un pivot.

e On appelle alors la fonction cherche_pivot(A, r, j) sur la case (r,7).

» Si on trouve un pivot : alors on effectue les opérations « comme d'habitude », a l'aide des fonctions de
l'exercice précédent. On échange la ligne du pivot avec la ligne r, puis on effectue des combinaisons pour
amener tous les coefficients a 0 en-dessous de (r, j). Ala fin, on incrémente r, autrement dit on passera
a la colonne suivante et on « descend d'une ligne ».

» Si on n'en trouve pas : alors on ne fait rien du tout. La boucle for va faire passer a la colonne suivante,
et la variable r ne bouge pas car on reste sur la méme ligne.

e A la fin si tout se passe bien, la matrice est échelonnée est la variable r est en fait le rang de la matrice
(on pourra l'afficher avec print avant de renvoyer la forme échelonnée).

)

Enfin on en vient a la fonction finale pour inverser une matrice.

BCPST1B 2025-2026 4/5 L.-C. LEFEVRE
Lycée Hoche, Versailles



TP 15 Matrices

s ™
Exercice 13 (*)

Ecrire une fonction inverse (A) qui renvoie l'inverse de la matrice A, dans le cas ou A est carrée et inversible.

e Au départ, on a besoin d'une matrice B qui est une copie de A (pour ne pas modifier A) ainsi que d'une
matrice I qui est 1'identité.

o Toutes les opérations élémentaires seront effectuées en méme temps sur B et sur I. A la fin B doit étre
transformée en identité et I sera la matrice inverse de A.

e Dans un premier temps on échelonne B exactement comme dans l'exercice précédent, en effectuant les
opérations simultanément sur 1.

» Si tout se passe bien, on trouve un pivot a chaque étape, et a la fin la matrice B est échelonnée et le
dernier coefficient en bas a droite est non-nul, le rang est bien égal a la taille n. En méme temps, la
matrice I est triangulaire inférieure.

» Si ce n'est pas le cas on peut éventuellement s'arréter 1a et renvoyer une erreur : c'est que la matrice
n'est pas inversible !

e Ensuite il faut remonter, en partant d'en bas. On a donc un deuxiéme morceau de la fonction avec une
nouvelle (double) boucle, qui cette fois part de la fin. On utilise des opérations élémentaires L; <— aL; + bL;
pour éliminer toute la colonne au-dessus du coefficient diagonal de B, partant d'en bas a droite, et ensuite
on le met a 1 avec une dilatation. Encore une fois, ces opérations sont faites simultanément sur B et sur 1.
Ici il n'y a rien a « chercher », car les pivots sont déja sur la diagonale et sont non-nuls.

¢« Ala fin, B est d'indentité et la matrice I est l'inverse de A.

BCPST1B 2025-2026 5/5 L.-C. LEFEVRE
Lycée Hoche, Versailles



	I Préliminaires
	I.1 Définir des matrices
	I.2 Créer des nouvelles matrices

	II Exercices
	II.1 Créer des matrices
	II.2 Opérations sur les matrices
	II.3 Quelques tests

	III Le pivot de Gauss

