
TP 14
Numpy et Matplotlib

Nous introduisons deux bibliothèques qui sont d'utilité fondamentale dans toutes les sciences des données (traiter
des grands tableaux, matrices, avec des millions de données, faire des calculs et des statistiques dessus) et qui
contribuent au succès croissant de Python dans ces domaines. De plus, ce TP fait le lien avec les cours de
mathématiques à la fois pour les matrices et pour les fonctions.

Pour tout le TP, on peut écrire et exécuter une fois pour toute au début

import numpy as np

import matplotlib.pyplot as plt

On pourra se servir des documents suivants :
• https://www.concours-agro-veto.fr/sites/default/files/media/2025-10/polypython.pdf : Aide-

mémoire Python distribué au concours Agro-Véto.
• https://matplotlib.org/cheatsheets/cheatsheets.pdf : Aide-mémoire de la bibliothèque Matplotlib

(un peu compliqué, mais illustre bien toutes les possibilités).

I Tableaux numpy

La bibliothèque Numpy introduit un nouveau type d'objet qu'on appellera tableau. Ceux-ci ressemblent en
apparence beaucoup aux listes, mais leur fonctionnement interne est bien différent. Ils sont notamment très
efficaces dans le cas où ils contiennent des millions de données, et cela nécessite de se pencher un peu plus sur le
fonctionnement interne de l'ordinateur pour bien comprendre.

I.1 Aperçu sur les tableaux à une dimension

Les tableaux sont des objets du type ndarray. On peut les créer avec les fonctions suivantes :

• Conversion depuis une liste : np.array(L)

>>> X = np.array([1, 3, 5, 7])

>>> print(X)

[1 3 5 7]

• Tableau de 𝑛 zéros : np.zeros(n)

>>> X = np.zeros(10)

>>> print(X)

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

• Tableau d'entiers consécutifs : np.arange(a, b) ou np.arange(n), avec la même syntaxe que range

>>> X = np.arange(10)

>>> print(X)

[0 1 2 3 4 5 6 7 8 9]

• Tableau de 𝑛 valeurs « linéairement espacées » entre deux bornes 𝑎 et 𝑏 : np.linspace(a, b, n)

>>> X = np.linspace(2, 3, 11)

>>> print(X)

[2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0]

Comme avec les listes, on peut :
• Demander la longueur du tableau : len(X),
• Accéder directement au 𝑖-ème élément : X[i], numérotés de 0 à 𝑛 − 1 comme d'habitude,
• Trancher le tableau : X[a:b] est le tableau constitué des éléments d'indice 𝑖 tel que 𝑎 ⩽ 𝑖 < 𝑏.

BCPST1B 2025–2026
Lycée Hoche, Versailles

1/10 L.-C. LEFÈVRE

https://www.concours-agro-veto.fr/sites/default/files/media/2025-10/polypython.pdf
https://matplotlib.org/cheatsheets/cheatsheets.pdf

TP 14 Numpy et Matplotlib

Il existe aussi X[a:] (à partir de l'indice 𝑎) et X[:b] (jusqu'à l'indice 𝑏). Les indices négatifs reviennent à la fin :
X[-1] est le dernier élément du tableau. Les tranches sont compatibles avec les indices négatifs, ainsi X[:-1] est
la tableau sans son dernier élément, et X[1:] sans le premier.

Quelles sont alors les différences avec les listes Python ?

• Les tableaux Numpy sont représentés en mémoire comme un unique bloc, réservé dès le départ, dans lequel
les valeurs sont posées exactement les unes à côté des autres dans des cases consécutives et de même taille.
Cela permet à l'ordinateur de calculer directement l'adresse mémoire de chaque élément (chaque case de la
mémoire possède une adresse, comme des maisons dans une très très longue rue) et d'y accéder rapidement.
Les listes Python ne sont pas aussi efficaces et les éléments sont parfois rangés « en vrac ».

• Les éléments du tableau ont un type et doivent tous avoir le même type. Ce type détermine à la fois la place
qu'occupe chaque élément en mémoire et donc la taille des cases (par exemple un entier 8 bits occupe 1 octet
et peut contenir 256 valeurs ; mais un entier 64 bits occupe 8 octets et peut contenir 264 ≈ 1,8 · 1019 valeurs),
et comment le nombre est représenté en mémoire (avec 8 bits sans signe on a tous les entiers de 0 à 255, mais
avec signe on peut aller de −128 à +127 ; les nombres à virgule flottante ont une représentation encore bien
différente dans un espace de 64 bits).

• À cause de cette structure, les tableaux ont une taille fixe, déterminée à leur création. On ne peut pas
si facilement faire un append ou insérer des éléments en plein milieu. En contrepartie, ils sont compacts
et efficaces : si on choisit le bon type adapté aux données à traiter alors aucune place n'est perdue et les
opérations sont effectuées le plus rapidement possible.

On accède au type avec la variable X.dtype, et à la place occupée en mémoire (en octets) avec la variable
X.nbytes, observez :

>>> X = np.array([1, 3, 5])

>>> type(X)

<class 'numpy.ndarray'>

X est un tableau numpy

>>> X.dtype

dtype('int64')

entiers codés sur 64 bits, soit 8 octets

>>> len(X)

3

3 éléments

>>> X.nbytes

24

total : 3 * 8 = 24 octets octets occupés en mémoire

Ou bien :

>>> X = np.linspace(0, 1, 20)

>>> print(X)

[0. 0.05263158 0.10526316 0.15789474 0.21052632 0.26315789

 0.31578947 0.36842105 0.42105263 0.47368421 0.52631579 0.57894737

 0.63157895 0.68421053 0.73684211 0.78947368 0.84210526 0.89473684

 0.94736842 1.]

>>> X.dtype

dtype('float64')

nombres à virgule flottante sur 64 bits soit 8 octets

>>> len(X)

20

20 valeurs

>>> X.nbytes

160

total : 8 * 20 octets

Ou encore :

BCPST1B 2025–2026
Lycée Hoche, Versailles

2/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

>>> Z = np.arange(10, dtype="uint8")

>>> print(Z)

[0 1 2 3 4 5 6 7 8 9]

>>> Z.dtype

dtype('uint8')

entiers non-signés sur 8 bits, soit 1 octet

>>> Z.nbytes

10

exactement 10 octets au total

Ce dernier tableau pose problème si on veut y stocker des valeurs au-delà de 255…

Exercice 1
Tester les deux lignes suivantes :

>>> X = np.arange(300, dtype="uint8")

>>> print(X)

Que se passe-t-il ? Ré-essayer en remplaçant "uint8" par "int8" puis par "int64".

I.2 Les opérations vectorielles

Les opérations mathématiques habituelles +, *, etc ont été reprogrammées pour agir directement sur les tableaux
Numpy, en effectuant toutes leurs opérations « case par case ». Observez :

>>> X = np.array([1, 3, 5])

>>> Y = np.array([6, -3, 8])

>>> X + Y

array([7, 0, 13])

>>> X * Y

array([6, -9, 40])

>>> -X

array([-1, -3, -5])

>>> Y**2

array([36, 9, 64])

L'intérêt de ces opérations — que l'on sait faire sur les listes avec une banale boucle for — est qu'elles s'exécutent
beaucoup plus rapidement pour l'ordinateur. De façon très simplifiée, l'instruction est comprise « d'un seul coup »
par le processeur (au lieu d'exécuter une boucle for et de devoir décoder les instructions à chaque étape) et tire
parti au mieux de toutes les optimisations possibles pour calculer rapidement.

On les appelle ici des opérations vectorielles, où le mot « vecteur » est synonyme de tableau de nombres (ou
en mathématiques : élément de ℝ𝑛). Ce sont des opérations qui agissent sur des vecteurs et non pas simplement
sur des nombres.

La bibliothèque Numpy contient aussi de nombreuses fonctions mathématiques usuelles qui s'appliquent direc
tement à chaque case d'un tableau : np.exp(), np.sin(), np.cos(), np.arctan(), np.log(), np.sqrt() (racine
carrée), ainsi que des constantes comme np.pi (nombre 𝜋)… Ces opérations vectorielles s'exécutent d'un ordre
de grandeur du millier de fois plus rapide que de faire une boucle Python pour les appliquer sur chaque élément.

En pratique, elles seront beaucoup utilisées combinées avec np.linspace(a, b, n) pour avoir une représentation
d'une fonction sur un intervalle [𝑎, 𝑏] « échantillonnée » sur 𝑛 points. Par exemple pour travailler avec la fonction
exponentielle sur [0, 1] en divisant cet intervalle en 100 points :

BCPST1B 2025–2026
Lycée Hoche, Versailles

3/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

>>> X = np.linspace(0, 1, 100)

>>> print(X)

[0. 0.01010101 0.02020202 0.03030303 0.04040404 0.05050505

 0.06060606 0.07070707 0.08080808 0.09090909 0.1010101 0.11111111

 ...

 0.96969697 0.97979798 0.98989899 1.]

>>> Y = np.exp(X)

>>> print(Y)

[1. 1.0101522 1.02040746 1.03076684 1.04123139 1.05180218

 1.06248028 1.07326679 1.0841628 1.09516944 1.10628782 1.11751907

 ...

 2.6371452 2.66391802 2.69096264 2.71828183]

À retenir

La combinaison de X = np.linspace(a, b, n) puis de fonctions vectorielles appliquées à X permet d'obtenir
une image échantillonnée sur 𝑛 points d'un intervalle [𝑎, 𝑏] et d'une fonction sur cet intervalle.

II Représentations graphiques

La bibliothèque Matplotlib premet de tracer de très nombreux types de graphiques. La fonction principale que
nous utiliserons est plt.plot(X, Y) qui prend au moins deux arguments : X et Y sont tous les deux des listes ou
bien des tableaux numpy, de même taille ; X une liste d'abscisses et Y une liste d'ordonnées, pour un ensemble de
points qui vont être automatiquement reliés. Ensuite, la fonction plt.show() permet d'afficher le graphique.

II.1 Graphes de fonctions

Pour représenter graphiquement une fonction, on a donc besoin de créer un tableau d'abscisses X puis un tableau
des ordonnées Y, en utilisant toute la méthode de la section précédente. Il faut choisir manuellement le nombre
de points d'échantillonnage, par exemple 𝑛 = 100. Voici le modèle de base, pour par exemple 𝑥 ↦ 𝑥2 − 3𝑥 + 2
sur [−4, 4] :

abscisses

X = np.linspace(-4, 4, 100)

ordonnées

Y = X**2 - 3*X + 2

tracer et afficher

plt.plot(X, Y)

plt.show()

Exercice 2
Tracer les graphes des fonctions suivantes.

• 𝑓1 : 𝑥 ↦ 𝑥3 − 5𝑥 sur [−4, 4]

• 𝑓2 : 𝑥 ↦ sin(𝑥) sur [0, 2𝜋],

• 𝑓3 : 𝑥 ↦ 𝑒𝑥 − 3𝑥 + 1 sur [−3, 3],

Le nombre de points d'échantillonnage doit être choisi pour être suffisamment fin, sinon la courbe n'est pas assez
lisse. Mais si on en met trop, le tableau est inutilement trop gros et le programme peut être lourd à charger.
Comme ci-dessus, 𝑛 = 100 est un bon compromis pour l'instant.

BCPST1B 2025–2026
Lycée Hoche, Versailles

4/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

Figure 1. – La fonction sinus sur [0, 4𝜋] avec 𝑛 = 20 points d'échantillonnage : c'est trop peu.

La bibliothèque Matplotlib contient de nombreuses options pour configurer le tracé et l'apparence de la fenêtre.
Citons seulement :
• plt.title("titre") : donne un titre à la fenêtre.
• plt.xlabel("titre") : donne un titre à l'axe des 𝑥.
• plt.ylabel("titre") : de même pour l'axe des 𝑦.
• plt.xlim(a, b) : fixe les bornes sur l'axes des 𝑥 entre 𝑎 et 𝑏. Si on ne les fixe pas manuellement, elles sont

ajustées automatiquement pour faire rentrer tout le graphe.
• plt.ylim(a, b) : de même pour l'axe des 𝑦.
• plt.axis("equal") : rend le repère orthonormé.
• plt.grid() : affiche une grille.
• Un troisième argument passé à plt.plot() sous la forme d'une chaine de caractères permet à la fois de

changer le type de point, le style de trait et la couleur. Par exemple "+-r" signifie « points tracés par des
symboles plus, reliés par des lignes simples, couleur rouge ». Voir l'aide-mémoire ou la documentation. Ces
options, et bien d'autres encore, peuvent être passées à plt.plot() sous forme d'arguments optionnels,
par exemple marker="+", linestyle="-", color="red". Consulter l'aide-mémoire Matplotlib pour la liste
complète.

• Les appels successifs à plt.plot() enregistrent les graphiques au fur et à mesure, jusqu'à ce que plt.show()
les affiche en les superposant. Lorsqu'on trace plusieurs graphiques sur une même figure, il est fort utile de
régler manuellement les couleurs et les limites de la fenêtre.

Exercice 3
Améliorer le tracé des fonctions précédentes (couleur, style de ligne, titres des fenêtres et des axes).

II.2 Courbes paramétrées

Dans une courbe paramétrée, on trace un point de coordonnées (𝑥(𝑡), 𝑦(𝑡)) avec un paramètre 𝑡 qui varie dans
un certain intervalle, et donc 𝑥, 𝑦 sont tous les deux des fonctions du même 𝑡. Pour tracer une telle courbe, il
faut donc échantillonner un intervalle pour 𝑡 dans un tableau T, puis en déduire deux tableaux X et Y. Le modèle
de base est le suivant qui trace la courbe paramétrée (cercle)

{𝑥(𝑡) = cos(𝑡)
𝑦(𝑡) = sin(𝑡) , 𝑡 ∈ [0, 2𝜋]

T = np.linspace(0, 2*np.pi, 100)

X = np.cos(T)

Y = np.sin(T)

plt.plot(X, Y)

plt.show()

BCPST1B 2025–2026
Lycée Hoche, Versailles

5/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

Figure 2. – Un cercle.

Exercice 4
Tracer les courbes suivantes. On inclut un lien vers le très beau site mathcurve.com recensant des centaines
de courbes mathématiques.

1. Les courbes de Lissajous (https://mathcurve.com/courbes2d/lissajous/lissajous.shtml)

{𝑥(𝑡) = cos(𝑝𝑡)
𝑦(𝑡) = sin(𝑞𝑡) , 𝑡 ∈ [0, 2𝜋]

pour différentes valeurs du couple (𝑝, 𝑞), par exemple (2, 3), (2, 5), (3, 5). Attention au nombre de points
d'échantillonnages pour que la courbe ait l'air suffisamment lisse !

2. La cardioïde (https://www.mathcurve.com/courbes2d/cardioid/cardioid.shtml)

{𝑥(𝑡) = (1 + cos(𝑡)) cos(𝑡)
𝑦(𝑡) = (1 + cos(𝑡)) sin(𝑡) , 𝑡 ∈ [−𝜋, 𝜋]

3. L'astroïde (https://www.mathcurve.com/courbes2d/astroid/astroid.shtml)

{𝑥(𝑡) = (cos(𝑡))3
𝑦(𝑡) = (sin(𝑡))3 , 𝑡 ∈ [−𝜋, 𝜋]

4. La strophoïde droite (https://www.mathcurve.com/courbes2d/strophoid/strophoid.shtml)

{

𝑥(𝑡) = 1−𝑡2

1+𝑡2

𝑦(𝑡) = 𝑡1−𝑡21+𝑡2
, 𝑡 ∈ ℝ

en centrant correctement la figure (axes orthonormées, limites de la fenêtre) sur la partie intéressante.

II.3 Suites

On souhaite maintenant représenter graphiquement une suite.

BCPST1B 2025–2026
Lycée Hoche, Versailles

6/10 L.-C. LEFÈVRE

https://mathcurve.com/
https://mathcurve.com/courbes2d/lissajous/lissajous.shtml
https://www.mathcurve.com/courbes2d/cardioid/cardioid.shtml
https://www.mathcurve.com/courbes2d/astroid/astroid.shtml
https://www.mathcurve.com/courbes2d/strophoid/strophoid.shtml

TP 14 Numpy et Matplotlib

Exercice 5

Soit la suite (𝑢𝑛)𝑛∈ℕ définie par 𝑢0 = 0 et ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
2

1 + 2𝑢𝑛
. On pose la fonction 𝑓 : 𝑥 ↦ 2

1 + 2𝑥
.

1. Représenter sur un même graphique, et en deux couleurs différentes, la courbe représentative de 𝑓 et la
droite d'équation 𝑦 = 𝑥. Que conjecture-t-on quant au comportement de la suite ?

2. Écrire une fonction suite(n) qui renvoie la liste des 𝑛 premiers termes de la suite.

3. Représenter graphiquement la suite, avec en abscisse un tableau de valeurs de 𝑛 (obtenue avec
np.arange(n)) et en ordonnée les valeurs de la suite. On pourra configurer la couleur et le type de point,
qu'on ne veut certainement pas relier :

Figure 3. – La suite (𝑢𝑛)𝑛∈ℕ.

4. Bonus : pouvez-vous tracer le diagramme en toile d'araignée à la question 1 ? Les points à relier ont pour
coordonnées successives (𝑢0, 0), (𝑢0, 𝑢1), (𝑢1, 𝑢1), (𝑢1, 𝑢2), (𝑢2, 𝑢2), (𝑢2, 𝑢3), etc.

III Dériver et intégrer

III.1 Dériver

Rappelons la formule suivante : pour une fonction 𝑓 et un point 𝑎 ∈ ℝ

𝑓 ′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

Supposons maintenant que la fonction 𝑓 est échantillonnée avec un tableau Numpy, c'est-à-dire qu'on dispose
d'un tableau X d'abscisses et d'un tableau Y d'ordonnées. On veut échantillonner de même sa dérivée. Alors
on approchera les quantités 𝑓(𝑥) − 𝑓(𝑎), pour 𝑥 → 𝑎, par l'écart entre les valeurs les plus proches possibles
Y[i+1] - Y[i], qu'on divisera par l'écart X[i+1] - X[i]. On obtient un nouveau tableau Z, qu'on peut tracer
en ordonnées par rapport à X pour visualiser la dérivée de 𝑓 . Attention, ce Z est nécessairement de taille un de
moins que Y…

Exercice 6
1. Écrire une fonction derive(X, Y) qui prend en argument deux tableaux supposés de même taille, repré

sentant une fonction échantillonnée, et renvoyant un tableau Z de taille un de moins représentant la dérivée.

2. Bonus : pouvez-vous l'écrire sans boucle, mais uniquement avec les opérations vectorielles de Numpy ?

BCPST1B 2025–2026
Lycée Hoche, Versailles

7/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

Exercice 7
Pour les fonctions suivantes, tracer sur un même graphe la fonction 𝑓 et sa dérivée (obtenue à l'aide de la
fonction derive précédente, et non pas en calculant la fonction dérivée à la main), de deux couleurs différentes,
éventuellement en testant diverses valeurs pour le nombre de points d'échantillonage :

1. 𝑥 ↦ arctan(𝑥) pour 𝑥 ∈ [−6, 6],

2. 𝑥 ↦ sin(𝑥) pour 𝑥 ∈ [−2𝜋, 2𝜋].

3. 𝑥 ↦ 𝑥2𝑒−𝑥 pour 𝑥 ∈ [−1, 4].

III.2 Intégrer

Pour intégrer une fonction (« calculer l'aire sous la courbe ») 𝑓 sur un intervalle [𝑎, 𝑏], on utilise la méthode
des rectangles à gauche qui consiste à approximer l'aire sous 𝑓 entre les points d'abscisse 𝑎 et 𝑎 + ℎ, pour ℎ
très petit, par l'aire d'un rectangle de base ℎ et de hauteur (à peu près constante) 𝑓(𝑎), c'est-à-dire le produit
ℎ × 𝑓(𝑎). Si on suppose que 𝑓 est échantillonnée par un tableau Numpy, d'abscisse X et d'ordonnée Y, alors il
faut multiplier les écarts X[i+1] - X[i] par Y[i] et sommer tout cela.

Exercice 8
1. Écrire une fonction integre(X, Y)

2. Bonus : pouvez-vous l'écrire sans boucle, mais uniquement avec les opérations Numpy ? La fonction
np.sum(X) calcule la somme de tous les éléments d'un tableau X.

Pour tester la fonction :

Exercice 9
1. (Mathématiques) Calculer l'intégrale suivante :

𝐼 = ∫
1

0

4
1 + 𝑥2

d𝑥

2. (Python) Donner une approximation de cette intégrale, avec la fonction integre, pour de plus en plus de
points d'échantillonnage (on pourra écrire une fonction integrale(n) qui utilise 𝑛 points).

IV Annexe : tableaux à plusieurs dimensions

Le module numpy est aussi particulièrement efficace pour gérer des tableaux à plusieurs dimensions.

À deux dimensions, un tableau X est composé de lignes et de colonnes. On accède à l'élément de la ligne 𝑖 et de
la colonne 𝑗 (tous les deux numérotés à partir de 0, comme d'habitude) avec la syntaxe X[i, j]. On peut par
exemple en créer avec les syntaxes suivantes :

• np.zeros((n, p)) en lui donnant en argument un tuple (𝑛, 𝑝) pour un tableau à 𝑛 lignes et 𝑝 colonnes :

>>> X = np.zeros((3, 5))

>>> print(X)

[[0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0.]]

• Utiliser la méthode reshape, directement après la création du tableau, pour remodeler la forme selon les
besoins :

BCPST1B 2025–2026
Lycée Hoche, Versailles

8/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

>>> X = np.arange(24).reshape(4, 6)

>>> print(X)

[[0 1 2 3 4 5]

 [6 7 8 9 10 11]

 [12 13 14 15 16 17]

 [18 19 20 21 22 23]]

Pour un tel tableau, la variable X.shape est le tuple (𝑛, 𝑝). Le nombre total de cases est exactement 𝑛 × 𝑝, qu'on
obtient aussi avec la variable X.size (pour un tableau à une dimension, c'est la même chose que len(X)).

Le nombre de dimensions du tableau est appelé dans le vocabulaire Numpy le nombre d'axes. Un tableau à trois
axes ressemble à un empilement de tableaux de dimension 2 et ses cases sont indicées par la syntaxe X[i, j, k].

Exemple avec un tableau de forme (3, 2, 4), représenté comme un empilement de 3 tableaux à 2 lignes et 3
colonnes :

>>> X = np.arange(24).reshape(3, 2, 4)

>>> print(X)

[[[0 1 2 3]

 [4 5 6 7]]

 [[8 9 10 11]

 [12 13 14 15]]

 [[16 17 18 19]

 [20 21 22 23]]]

>>> X.shape

(3, 2, 4)

>>> X.size

24

Enfin, on peut trancher un tableau à plusieurs axes, indépendamment sur chaque axe, en séparant par des virgules
les différents syntaxes de tranche :

>>> X = np.arange(24).reshape(4, 6)

>>> print(X)

[[0 1 2 3 4 5]

 [6 7 8 9 10 11]

 [12 13 14 15 16 17]

 [18 19 20 21 22 23]]

>>> print(X[:3, 1:4]) # lignes 0, 1, 2, colonnes 1, 2, 3

[[1 2 3]

 [7 8 9]

 [13 14 15]]

>>> print(X[:, :1]) # toutes les lignes, seulement la première colonne

[[0]

 [6]

 [12]

 [18]]

>>> print(X[:, 0]) # toutes les lignes, colonne 0

[0 6 12 18]

c'est presque pareil mais c'est un tableau à un seul axe

>>> print(X[:, ::-1]) # mêmes lignes, colonnes renversées

[[5 4 3 2 1 0]

 [11 10 9 8 7 6]

 [17 16 15 14 13 12]

 [23 22 21 20 19 18]]

BCPST1B 2025–2026
Lycée Hoche, Versailles

9/10 L.-C. LEFÈVRE

TP 14 Numpy et Matplotlib

Remarque. Il est intéressant de réfléchir au fait que toutes ces opérations (reshape, tranches) ne « bougent »
rien dans la mémoire : les éléments d'un tableau à plusieurs dimensions restent toujours rangés les uns à la
suite des autres, alignés sur des adresses mémoires consécutives. Ce qui change avec la forme du tableau, c'est
seulement la façon de numéroter ces mêmes éléments. Observons par exemples les deux tableaux suivants :

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14

Dans les deux cas, il s'agit bien de cases de mémoire rangées consécutivement et numérotées de 0 à 14. Prenons
par exemple l'élément numéroté 8 : c'est parce que le premier est de forme (3, 5) que cet élément est en ligne 1
colonne 3, alors que dans le deuxième de forme (5, 3) il est en ligne 2 colonne 2. De même, prenons par exemple
la case (2, 1) : elle correspond à l'élément 11 dans le premier tableau mais à 7 dans le deuxième, ce que l'on
peut savoir uniquement en connaissant leur forme. C'est toujours un petit jeu d'arithmétique qui permet de
calculer, à partir de la connaissance de la taille et de la forme d'un tableau, à quelle adresse se situera l'élément
en ligne 𝑖 et colonne 𝑗 ; ou réciproquement, étant donnés des éléments numérotés consécutivement en mémoire,
de décider à quelle ligne et à quelle colonne correspond le 𝑛-ième élément.

Les opérations de tranches, elles aussi, ne « tranchent » rien du tout dans la mémoire. Par exemple l'élément
d'indice 𝑖 de X[1:] est l'élément d'indice 𝑖 + 1 de X, là encore il s'agit seulement de quelques manipulations
arithmétiques cachées à l'utilisateur.

BCPST1B 2025–2026
Lycée Hoche, Versailles

10/10 L.-C. LEFÈVRE

	I Tableaux numpy
	I.1 Aperçu sur les tableaux à une dimension
	I.2 Les opérations vectorielles

	II Représentations graphiques
	II.1 Graphes de fonctions
	II.2 Courbes paramétrées
	II.3 Suites

	III Dériver et intégrer
	III.1 Dériver
	III.2 Intégrer

	IV Annexe : tableaux à plusieurs dimensions

