TP 14
Numpy et Matplotlib

Nous introduisons deux bibliothéques qui sont d'utilité fondamentale dans toutes les sciences des données (traiter
des grands tableaux, matrices, avec des millions de données, faire des calculs et des statistiques dessus) et qui
contribuent au succes croissant de Python dans ces domaines. De plus, ce TP fait le lien avec les cours de
mathématiques a la fois pour les matrices et pour les fonctions.

Pour tout le TP, on peut écrire et exécuter une fois pour toute au début

import numpy as np
import matplotlib.pyplot as plt

On pourra se servir des documents suivants :
e https://www.concours-agro-veto.fr/sites/default/files/media/2025-10/polypython.pdf : Aide-
mémoire Python distribué au concours Agro-Véto.
e https://matplotlib.org/cheatsheets/cheatsheets.pdf : Aide-mémoire de la bibliotheque Matplotlib
(un peu compliqué, mais illustre bien toutes les possibilités).

I Tableaux numpy

La bibliotheque Numpy introduit un nouveau type d'objet qu'on appellera tableau. Ceux-ci ressemblent en
apparence beaucoup aux listes, mais leur fonctionnement interne est bien différent. Ils sont notamment tres
efficaces dans le cas ou ils contiennent des millions de données, et cela nécessite de se pencher un peu plus sur le
fonctionnement interne de 1'ordinateur pour bien comprendre.

I.1 Apercu sur les tableaux a une dimension

Les tableaux sont des objets du type ndarray. On peut les créer avec les fonctions suivantes :

e Conversion depuis une liste : np.array (L)

>>> X = np.array([1, 3, 5, 7]1)
>>> print (X)
[1 35 7]

e Tableau de n zéros : np.zeros(n)

>>> X = np.zeros(10)
>>> print (X)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

e Tableau d'entiers consécutifs : np.arange(a, b) ou np.arange(n), avec la méme syntaxe que range

>>> X = np.arange(10)
>>> print (X)
[01 2345678 9]

e Tableau de n valeurs « linéairement espacées » entre deux bornes a et b : np.linspace(a, b, n)

>>> X = np.linspace(2, 3, 11)
>>> print (X)
[2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0]

Comme avec les listes, on peut :
e Demander la longueur du tableau : len(X),
e Accéder directement au i-eéme élément : X[i], numérotés de 0 & n — 1 comme d'habitude,
o Trancher le tableau : X[a:b] est le tableau constitué des éléments d'indice 7 tel que a < i < b.

BCPST1B 2025-2026 1/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

https://www.concours-agro-veto.fr/sites/default/files/media/2025-10/polypython.pdf
https://matplotlib.org/cheatsheets/cheatsheets.pdf

TP 14 Numpy et Matplotlib

11 existe aussi X[a:] (a partir de l'indice a) et X[:b] (jusqu'a l'indice b). Les indices négatifs reviennent a la fin :
X[-1] est le dernier élément du tableau. Les tranches sont compatibles avec les indices négatifs, ainsi X[:-1] est
la tableau sans son dernier élément, et X[1:] sans le premier.

Quelles sont alors les différences avec les listes Python 7

e Les tableaux Numpy sont représentés en mémoire comme un unique bloc, réservé des le départ, dans lequel
les valeurs sont posées exactement les unes a coté des autres dans des cases consécutives et de méme taille.
Cela permet a l'ordinateur de calculer directement 1'adresse mémoire de chaque élément (chaque case de la
mémoire posseéde une adresse, comme des maisons dans une tres trés longue rue) et d'y accéder rapidement.
Les listes Python ne sont pas aussi efficaces et les éléments sont parfois rangés « en vrac ».

e Les éléments du tableau ont un type et doivent tous avoir le méme type. Ce type détermine & la fois la place
qu'occupe chaque élément en mémoire et donc la taille des cases (par exemple un entier 8 bits occupe 1 octet
et peut contenir 256 valeurs ; mais un entier 64 bits occupe 8 octets et peut contenir 264 ~ 1,8 - 1019 valeurs),
et comment le nombre est représenté en mémoire (avec 8 bits sans signe on a tous les entiers de 0 & 255, mais
avec signe on peut aller de —128 a +127 ; les nombres a virgule flottante ont une représentation encore bien
différente dans un espace de 64 bits).

e A cause de cette structure, les tableaux ont une taille fixe, déterminée a leur création. On ne peut pas
si facilement faire un append ou insérer des éléments en plein milieu. En contrepartie, ils sont compacts
et efficaces : si on choisit le bon type adapté aux données a traiter alors aucune place n'est perdue et les
opérations sont effectuées le plus rapidement possible.

On accede au type avec la variable X.dtype, et a la place occupée en mémoire (en octets) avec la variable
X.nbytes, observez :

>>> X = np.array([1, 3, 5])

>>> type(X)

<class 'numpy.ndarray'>

X est un tableau numpy

>>> X.dtype

dtype('int64')

entiers codés sur 64 bits, soit 8 octets
>>> len(X)

3

3 éléments

>>> X.nbytes

24

total : 3 * 8 = 24 octets octets occupés en mémoire

Ou bien :

>>> X = np.linspace(0, 1, 20)

>>> print (X)

[o. 0.05263158 0.10526316 0.15789474 0.21052632 0.26315789
0.31578947 0.36842105 0.42105263 0.47368421 0.52631579 0.57894737
0.63157895 0.684210563 0.73684211 0.78947368 0.84210526 0.89473684
0.94736842 1.]

>>> X.dtype

dtype('float64')

nombres a virgule flottante sur 64 bits soit 8 octets

>>> len(X)

20

20 wvaleurs

>>> X.nbytes

160

total : 8 * 20 octets

Ou encore :

BCPST1B 2025-2026 2/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

>>> Z = np.arange(10, dtype="uint8")

>>> print(Z)

(012345678 9]

>>> Z.dtype

dtype('uint8')

entiers mon-signés sur 8 bits, soit 1 octet
>>> Z.nbytes

10

exactement 10 octets au total

Ce dernier tableau pose probleme si on veut y stocker des valeurs au-dela de 255...

e : a
Exercice 1
Tester les deux lignes suivantes :
>>> X = np.arange(300, dtype="uint8")
>>> print (X)
\Que se passe-t-il 7 Ré-essayer en remplacant "uint8" par "int8" puis par "int64".)

I.2 Les opérations vectorielles

Les opérations mathématiques habituelles +, *, etc ont été reprogrammeées pour agir directement sur les tableaux
Numpy, en effectuant toutes leurs opérations « case par case ». Observez :

>>> X = np.array([1, 3, 5])

>>> Y = np.array([6, -3, 8])
>>> X + Y

array([7, 0, 13])

>>> X x Y

array([6, -9, 40])

>>> =X

array([-1, -3, -5])

>>> Y*%2

array([36, 9, 64])

L'intérét de ces opérations — que 1'on sait faire sur les listes avec une banale boucle for — est qu'elles s'exécutent
beaucoup plus rapidement pour 1'ordinateur. De fagon tres simplifiée, 1'instruction est comprise « d'un seul coup »
par le processeur (au lieu d'exécuter une boucle for et de devoir décoder les instructions a chaque étape) et tire
parti au mieux de toutes les optimisations possibles pour calculer rapidement.

On les appelle ici des opérations vectorielles, ol le mot « vecteur » est synonyme de tableau de nombres (ou
en mathématiques : élément de R™). Ce sont des opérations qui agissent sur des vecteurs et non pas simplement
sur des nombres.

La bibliotheque Numpy contient aussi de nombreuses fonctions mathématiques usuelles qui s'appliquent direc-
tement a chaque case d'un tableau : np.exp(), np.sin(), np.cos(), np.arctan(), np.log(), np.sqrt () (racine
carrée), ainsi que des constantes comme np.pi (nombre 7).. Ces opérations vectorielles s'exécutent d'un ordre
de grandeur du millier de fois plus rapide que de faire une boucle Python pour les appliquer sur chaque élément.

En pratique, elles seront beaucoup utilisées combinées avec np.linspace(a, b, n) pour avoir une représentation
d'une fonction sur un intervalle [a, b] « échantillonnée » sur n points. Par exemple pour travailler avec la fonction
exponentielle sur [0, 1] en divisant cet intervalle en 100 points :

BCPST1B 2025-2026 3/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

>>> X = np.linspace(0, 1, 100)

>>> print (X)

[O. 0.01010101 0.02020202 0.03030303 0.04040404 0.05050505
0.06060606 0.07070707 0.08080808 0.09090909 0.1010101 O.11111111

0.96969697 0.97979798 0.98989899 1.]
>>> Y = np.exp(X)
>>> print (Y)
[1. 1.0101522 1.02040746 1.03076684 1.04123139 1.05180218
1.06248028 1.07326679 1.0841628 1.09516944 1.10628782 1.11751907

2.6371452 2.66391802 2.69096264 2.71828183]

La combinaison de X = np.linspace(a, b, n) puis de fonctions vectorielles appliquées a X permet d'obtenir
une image échantillonnée sur n points d'un intervalle [a, b] et d'une fonction sur cet intervalle.

IT Représentations graphiques

La bibliotheque Matplotlib premet de tracer de trés nombreux types de graphiques. La fonction principale que
nous utiliserons est plt.plot(X, Y) qui prend au moins deux arguments : X et Y sont tous les deux des listes ou
bien des tableaux numpy, de méme taille ; X une liste d'abscisses et Y une liste d'ordonnées, pour un ensemble de
points qui vont étre automatiquement reliés. Ensuite, la fonction plt.show() permet d'afficher le graphique.

I1.1 Graphes de fonctions

Pour représenter graphiquement une fonction, on a donc besoin de créer un tableau d'abscisses X puis un tableau
des ordonnées Y, en utilisant toute la méthode de la section précédente. Il faut choisir manuellement le nombre
de points d'échantillonnage, par exemple n = 100. Voici le modele de base, pour par exemple = > 22 — 3z + 2
sur [—4,4] :

abscisses

X = np.linspace(-4, 4, 100)
ordonnées

Y = X*x2 - 3%X + 2

tracer et afficher
plt.plot(X, Y)

plt.show()

Exercice 2
Tracer les graphes des fonctions suivantes.

o f1 x> 2% —b5x sur [—4,4]

o fy x> sin(z) sur [0, 27],

o faixre®—3x+1sur[-3,3],

Le nombre de points d'échantillonnage doit étre choisi pour étre suffisamment fin, sinon la courbe n'est pas assez
lisse. Mais si on en met trop, le tableau est inutilement trop gros et le programme peut étre lourd a charger.
Comme ci-dessus, n = 100 est un bon compromis pour l'instant.

BCPST1B 2025-2026 4/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

—0.251

—0.50 1

=0.751

—1.00 1

0 2 4 6 8 10 12

Figure 1. — La fonction sinus sur [0, 47| avec n = 20 points d'échantillonnage : c'est trop peu.

La bibliotheque Matplotlib contient de nombreuses options pour configurer le tracé et 1'apparence de la fenétre.
Citons seulement :

plt.title("titre") : donne un titre a la fenétre.

plt.xlabel("titre") : donne un titre a l'axe des z.

plt.ylabel("titre") : de méme pour l'axe des y.

plt.xlim(a, b) : fixe les bornes sur l'axes des x entre a et b. Si on ne les fixe pas manuellement, elles sont
ajustées automatiquement pour faire rentrer tout le graphe.

plt.ylim(a, b) : de méme pour l'axe des y.

plt.axis("equal") : rend le repére orthonormé.

plt.grid() : affiche une grille.

Un troisitme argument passé a plt.plot() sous la forme d'une chaine de caractéres permet a la fois de
changer le type de point, le style de trait et la couleur. Par exemple "+-r" signifie « points tracés par des
symboles plus, reliés par des lignes simples, couleur rouge ». Voir 'aide-mémoire ou la documentation. Ces
options, et bien d'autres encore, peuvent étre passées a plt.plot() sous forme d'arguments optionnels,
par exemple marker="+" linestyle="-", color="red". Consulter 1'aide-mémoire Matplotlib pour la liste
complete.

Les appels successifs a plt.plot () enregistrent les graphiques au fur et a mesure, jusqu'a ce que plt.show()
les affiche en les superposant. Lorsqu'on trace plusieurs graphiques sur une méme figure, il est fort utile de
régler manuellement les couleurs et les limites de la fenétre.

Exercice 3
Améliorer le tracé des fonctions précédentes (couleur, style de ligne, titres des fenétres et des axes).

I1.2 Courbes paramétrées

Dans une courbe paramétrée, on trace un point de coordonnées (z(t), y(t)) avec un parametre ¢ qui varie dans
un certain intervalle, et donc x, y sont tous les deux des fonctions du méme t. Pour tracer une telle courbe, il
faut donc échantillonner un intervalle pour ¢ dans un tableau T, puis en déduire deux tableaux X et Y. Le modele
de base est le suivant qui trace la courbe paramétrée (cercle)

< >4

= np.linspace(0, 2*np.pi, 100)
= np.cos(T)
= np.sin(T)

plt.plot(X, Y)
plt.show()

BCPST1B 2025-2026 5/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

-0.251

—0.50 1

—0.751

—1.001

-1.0 -0.5 0.0 0.5 1.0

Figure 2. — Un cercle.

1.

Exercice 4
Tracer les courbes suivantes. On inclut un lien vers le trés beau site mathcurve.com recensant des centaines
de courbes mathématiques.

Les courbes de Lissajous (https://mathcurve.com/courbes2d/lissajous/lissajous.shtml)

{m(t) = cos(pt) t e [0,27]

pour différentes valeurs du couple (p, q), par exemple (2,3), (2,5), (3,5). Attention au nombre de points

d'échantillonnages pour que la courbe ait 1'air suffisamment lisse !

~

2. La cardioide (https://www.mathcurve.com/courbes2d/cardioid/cardioid.shtml)
x(t) = (1 + cos(t)) cos(t) B
{y(t) — (1 + cos(t)) sin(t)” €T
3. L'astroide (https://www.mathcurve.com/courbes2d/astroid/astroid.shtml)
a(t) = (cos(t))?
. , te|—mm
{0 = ey € tm
4. La strophoide droite (https://www.mathcurve.com/courbes2d/strophoid/strophoid.shtml)
x(t) = =4
(¥ L., teR
y(t) = ti5e
en centrant correctement la figure (axes orthonormées, limites de la fenétre) sur la partie intéressante.)
I1.3 Suites
On souhaite maintenant représenter graphiquement une suite.
BCPST1B 2025-2026 6/10 L.-C. LEFEVRE

Lycée Hoche, Versailles

https://mathcurve.com/
https://mathcurve.com/courbes2d/lissajous/lissajous.shtml
https://www.mathcurve.com/courbes2d/cardioid/cardioid.shtml
https://www.mathcurve.com/courbes2d/astroid/astroid.shtml
https://www.mathcurve.com/courbes2d/strophoid/strophoid.shtml

TP 14 Numpy et Matplotlib

e : a

Exercice 5

2
it 1 i éfini I Uy = A =——— 0On la fonction f : .

Soit la suite (un)neN définie par ug =0 et Vn €N, u, 1520, On pose la fonction f: x T+ 22

1. Représenter sur un méme graphique, et en deux couleurs différentes, la courbe représentative de f et la
droite d'équation y = z. Que conjecture-t-on quant au comportement de la suite ?

2. Ecrire une fonction suite(n) qui renvoie la liste des n premiers termes de la suite.

3. Représenter graphiquement la suite, avec en abscisse un tableau de valeurs de n (obtenue avec
np.arange(n)) et en ordonnée les valeurs de la suite. On pourra configurer la couleur et le type de point,
qu'on ne veut certainement pas relier :

2.00 1 + 2.00 4
1.75 1.75 4
1.50 A 1.50 4
1.254 1.25 A
+
> 1.00 4
+ | 1.00 A
0751 t 1 0.75 \Diﬂ
I .
0.50 1
1 0.50 1
0.25 1
0.25 1
0.00 1+
T 0.00 1+
0 1 2 3 4 5 6 7 8 9 10 T T T T T T T T T
n 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Figure 3. — La suite (u,,) ..

4. Bonus : pouvez-vous tracer le diagramme en toile d'araignée a la question 1 7 Les points & relier ont pour

coordonnées successives (ug, 0), (ug, uq), (uy,uy), (Uy,us), (Uy,Usy), (ug,us), ete.)

IIT Dériver et intégrer

I11.1 Dériver

Rappelons la formule suivante : pour une fonction f et un point a € R

T—a Tr—a

Supposons maintenant que la fonction f est échantillonnée avec un tableau Numpy, c'est-a-dire qu'on dispose
d'un tableau X d'abscisses et d'un tableau Y d'ordonnées. On veut échantillonner de méme sa dérivée. Alors
on approchera les quantités f(z)— f(a), pour x — a, par 1'écart entre les valeurs les plus proches possibles
Y[i+1] - Y[i], qu'on divisera par l'écart X[i+1] - X[i]. On obtient un nouveau tableau Z, qu'on peut tracer
en ordonnées par rapport a X pour visualiser la dérivée de f. Attention, ce Z est nécessairement de taille un de
moins que Y...

Exercice 6
1. Ecrire une fonction derive(X, Y) qui prend en argument deux tableaux supposés de méme taille, repré-
sentant une fonction échantillonnée, et renvoyant un tableau Z de taille un de moins représentant la dérivée.

2. Bonus : pouvez-vous 1'écrire sans boucle, mais uniquement avec les opérations vectorielles de Numpy ?

BCPST1B 2025-2026 7/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

s : ~
Exercice 7

Pour les fonctions suivantes, tracer sur un méme graphe la fonction f et sa dérivée (obtenue a l'aide de la
fonction derive précédente, et non pas en calculant la fonction dérivée a la main), de deux couleurs différentes,
éventuellement en testant diverses valeurs pour le nombre de points d'échantillonage :

1. z+> arctan(z) pour x € [—6, 6],

2.z sin(z) pour x € [—27, 27].

3z z2e™® pour = € [—1,4].

II1.2 Intégrer

Pour intégrer une fonction (« calculer 1'aire sous la courbe ») f sur un intervalle [a,b], on utilise la méthode
des rectangles 4 gauche qui consiste a approximer 1'aire sous f entre les points d'abscisse a et a 4+ h, pour h
trés petit, par 1'aire d'un rectangle de base h et de hauteur (& peu prés constante) f(a), c'est-a-dire le produit
h x f(a). Si on suppose que f est échantillonnée par un tableau Numpy, d'abscisse X et d'ordonnée Y, alors il
faut multiplier les écarts X[i+1] - X[i] par Y[i] et sommer tout cela.

Exercice 8
1. Ecrire une fonction integre (X, Y)

2. Bonus : pouvez-vous l'écrire sans boucle, mais uniquement avec les opérations Numpy ? La fonction
np.sum(X) calcule la somme de tous les éléments d'un tableau X.

Pour tester la fonction :

s . N

Exercice 9

1. (Mathématiques) Calculer l'intégrale suivante :

1
4
I = / dx
o 1+a?
2. (Python) Donner une approximation de cette intégrale, avec la fonction integre, pour de plus en plus de
points d'échantillonnage (on pourra écrire une fonction integrale(n) qui utilise n points).)

IV Annexe : tableaux a plusieurs dimensions

Le module numpy est aussi particulierement efficace pour gérer des tableaux a plusieurs dimensions.

A deux dimensions, un tableau X est composé de lignes et de colonnes. On accede a 1'élément de la ligne i et de
la colonne j (tous les deux numérotés a partir de 0, comme d'habitude) avec la syntaxe X[i, j]. On peut par
exemple en créer avec les syntaxes suivantes :

e np.zeros((n, p)) en lui donnant en argument un tuple (n,p) pour un tableau a n lignes et p colonnes :

>>> X = np.zeros((3, 5))
>>> print (X)

[[0. 0. 0. 0. 0.1
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

o Utiliser la méthode reshape, directement apres la création du tableau, pour remodeler la forme selon les
besoins :

BCPST1B 2025-2026 8/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

>>> X = np.arange(24) .reshape(4, 6)
>>> print (X)

[fo 1 2 3 4 5]

[6 7 8 9 10 11]

[12 13 14 15 16 17]

[18 19 20 21 22 23]]

Pour un tel tableau, la variable X.shape est le tuple (n, p). Le nombre total de cases est exactement n X p, qu'on
obtient aussi avec la variable X.size (pour un tableau & une dimension, c'est la méme chose que len(X)).

Le nombre de dimensions du tableau est appelé dans le vocabulaire Numpy le nombre d'axes. Un tableau a trois
axes ressemble a un empilement de tableaux de dimension 2 et ses cases sont indicées par la syntaxe X[i, j, k.

Exemple avec un tableau de forme (3,2,4), représenté comme un empilement de 3 tableaux a 2 lignes et 3
colonnes :

>>> X = np.arange(24) .reshape(3, 2, 4)
>>> print (X)
((ffo 1 2 3]

[4 5 6 7]]

[[8 9 10 11]
[12 13 14 15]]

[[16 17 18 19]
[20 21 22 23111
>>> X.shape

(3, 2, 4)
>>> X.size
24

Enfin, on peut trancher un tableau a plusieurs axes, indépendamment sur chaque axe, en séparant par des virgules
les différents syntaxes de tranche :

>>> X = np.arange(24) .reshape(4, 6)
>>> print (X)
[[fo 1 2 3 4 5]
[6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
>>> print(X[:3, 1:4]) # lignes 0, 1, 2, colonnes 1, 2, 3

[([1 2 3]
L7 8 9]
[13 14 15]]

>>> print (X[:, :1]) # toutes les lignes, seulement la premiére colonne
([o]

[6]

[12]

[18]]
>>> print(X[:, 0]) # toutes les lignes, colonne O

[0 6 12 18]
c'est presque pareil mais c'est un tableau 4 un seul azxe
>>> print(X[:, ::-1]1) # mémes lignes, colonnes renversées
(L5 4 3 2 1 0]

(11 10 9 8 7 6]

[17 16 15 14 13 12]

[23 22 21 20 19 18]]

BCPST1B 2025-2026 9/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 14 Numpy et Matplotlib

Remarque. 11 est intéressant de réfléchir au fait que toutes ces opérations (reshape, tranches) ne « bougent »
rien dans la mémoire : les éléments d'un tableau a plusieurs dimensions restent toujours rangés les uns a la
suite des autres, alignés sur des adresses mémoires consécutives. Ce qui change avec la forme du tableau, c'est
seulement la fagon de numéroter ces mémes éléments. Observons par exemples les deux tableaux suivants :

0]1]2
011234 31415
516171819 6|78
10111112]13]14 911011
12]113]14

Dans les deux cas, il s'agit bien de cases de mémoire rangées consécutivement et numérotées de 0 a 14. Prenons
par exemple 1'élément numéroté 8 : c'est parce que le premier est de forme (3,5) que cet élément est en ligne 1
colonne 3, alors que dans le deuxiéme de forme (5, 3) il est en ligne 2 colonne 2. De méme, prenons par exemple
la case (2,1) : elle correspond a 1'élément 11 dans le premier tableau mais a 7 dans le deuxiéme, ce que 1'on
peut savoir uniquement en connaissant leur forme. C'est toujours un petit jeu d'arithmétique qui permet de
calculer, a partir de la connaissance de la taille et de la forme d'un tableau, a quelle adresse se situera 1'élément
en ligne 7 et colonne j ; ou réciproquement, étant donnés des éléments numérotés consécutivement en mémoire,
de décider a quelle ligne et a quelle colonne correspond le n-ieme élément.

Les opérations de tranches, elles aussi, ne « tranchent » rien du tout dans la mémoire. Par exemple 1'élément
d'indice ¢ de X[1:] est 1'élément d'indice i + 1 de X, la encore il s'agit seulement de quelques manipulations
~arithmétiques cachées a l'utilisateur.

BCPST1B 2025-2026 10/10 L.-C. LEFEVRE
Lycée Hoche, Versailles

	I Tableaux numpy
	I.1 Aperçu sur les tableaux à une dimension
	I.2 Les opérations vectorielles

	II Représentations graphiques
	II.1 Graphes de fonctions
	II.2 Courbes paramétrées
	II.3 Suites

	III Dériver et intégrer
	III.1 Dériver
	III.2 Intégrer

	IV Annexe : tableaux à plusieurs dimensions

