
TP 13

Révisions et consolidation 2

Exercice 1 Nouvel an
1. Écrire une fonction récursive decompte(n) qui affiche un décompte puis souhaite la bonne année. Par

exemple avec 𝑛 = 5 on veut le résultat suivant :

>>> decompte(5)

5

4

3

2

1

Bonne année !!!

2. Que se passe-t-il si dans le programme on inverse l'ordre des lignes print et decompte(n-1) ?

Exercice 2 Classique classique
1. Écrire une fonction factoriel(n), qui prend en argument un entier 𝑛 ∈ ℕ et renvoie la valeur de 𝑛!, de

façon récursive.

2. Pour tous entiers 𝑛 ∈ ℕ et 𝑘 ∈ ℕ, le nombre d'arrangements 𝐴𝑘
𝑛 est défini par

𝐴𝑘
𝑛 =

{

0 si 𝑘 > 𝑛
1 si 𝑘 = 0

𝑛!
(𝑛−𝑘)! = 𝑛 × (𝑛 − 1) × ⋯× (𝑛 − 𝑘 + 1) sinon

Écrire une fonction arrangement(n, k) qui calcule le nombre d'arrangements en utilisant une boucle
for.

3. Pouvez-vous écrire cette même fonction de façon récursive ?

4. Selon le paradoxe des anniversaires, le nombre de façons d'attribuer à 𝑘 personnes leur date d'anniversaire
parmi 365 jours de façon à ce qu'au moins deux personnes soient nées le même jour est égal à 365𝑘 −𝐴𝑘

365
(c'est le complémentaire de : attribuer à 𝑘 personnes des dates toutes différentes parmi 365). La probabilité
qu'au moins deux personnes aient la même date d'anniversaire est donc

𝑝𝑘 =
1

365𝑘
(365𝑘 −𝐴𝑘

365) = 1 − 𝐴𝑘
365

365𝑘
= 1 − (365

365
× 364
365

× ⋯× 365 − 𝑘 + 1
365

)

Écrire une fonction anniversaires(n) qui affiche, pour 𝑘 de 1 à 𝑛, à la fois le nombre 𝑘 et la probabilité
𝑝𝑘 ci-dessus ; et tester avec 𝑛 = 50.

Remarque. On trouve les fonctions suivantes dans le module math, à importer avec import math :
• factorial(n) : la factorielle de 𝑛.
• perm(n, k) : nombre d'arrangements de 𝑘 objets parmi 𝑛, appelé en anglais nombre de permutations.
• comb(n, k) : coefficient binomial (𝑛𝑘), appelé en anglais nombre de combinaisons.

Si on peut se permettre de les utiliser parfois, il s'agit d'une question très très classique de savoir les ré-écrire.
Pour que le programme soit efficace, il ne faut pas calculer 𝑛!

(𝑛−𝑘)! en calculant la factorielle de chacun de ces
deux termes puis en divisant — cela fait apparaitre des nombres très très grands alors que beaucoup de termes
se simplifient dans la fraction — mais l'écrire comme un seul produit.

BCPST1B 2025–2026
Lycée Hoche, Versailles

1/4 L.-C. LEFÈVRE

TP 13 Révisions et consolidation 2

Exercice 3 Palindromes
On rappelle qu'un mot est un palindrome s'il se lit aussi bien de gauche à droite que de droite à gauche, par
exemple le mot "kayak" ou le prénom "anna".

On souhaite écrire une fonction est_palindrome(m) qui prend en argument une chaine de caractères m et
qui renvoie True si m est un palindrome et False sinon. Mais dans ce TP, on souhaite que la fonction soit
récursive… La condition d'être un palindrome se formule bien récursivement à partir du premier caractère m[0],
du dernier caractère m[-1], et du mot restant (tranche) m[1:-1].

1. Au brouillon, proposer une formulation récursive du problème. Que se passe-t-il si le mot de départ était
de longueur paire ? Et s'il était de longueur impaire ?

2. Écrire la fonction récursive est_palindrome(m).

Exercice 4 Le compteur d'anagrammes (annale DS)
On souhaite écrire un programme pour dénombrer tous les anagrammes d'un mot. Pour cela, on a besoin
d'une fonction factoriel(n) et de compter combien de fois apparait chaque lettre. Pour simplifier, on
suppose que nos mots sont écrits uniquement avec les 26 lettres de l'alphabet en minuscule (pas d'accents,
pas de majuscules, pas d'autres signes de ponctuation) et on donne la variable Python alphabet =

"abcdefghijklmnopqrstuvwxyz". Il est alors pratique de numéroter les lettres à partir de 0, ainsi a est la
lettre 0 et z est la lettre 25.

1. Écrire, si ce n'est pas déjà fait, la fonction factoriel(n).

2. Écrire une fonction numero(x) qui prend en argument un caractère seul x et renvoie son numéro en tant
que lettre de l'alphabet.

3. Écrire alors une fonction compte(m) qui prend en argument une chaine de caractères m et qui renvoie une
liste C de longueur exactement 26, telle que pour tout indice j, C[j] est le nombre de fois où la lettre
numérotée j apparait dans m.

4. En déduire la fonction anagrammes(m) qui renvoie le nombre d'anagrammes du mot m.

On rappelle qu'on l'obtient à partir de la factorielle de la longueur du mot, divisée par le produit des
factorielles des nombres de fois que chaque lettre apparait. Comme 0! = 1 il est cohérent de considérer que
les lettres qui n'apparaissent pas apparaissent en fait 0 fois (ce n'est pas un cas à traiter à part).

5. À partir des fonctions précédentes, écrire une fonction sont_anagrammes(m, s) qui renvoie True si les
mots donnés par les chaines de caractères m et s sont bien anagrammes l'un de l'autre, et False sinon.

BCPST1B 2025–2026
Lycée Hoche, Versailles

2/4 L.-C. LEFÈVRE

TP 13 Révisions et consolidation 2

Exercice 5 Une petite parenthèse enchantée (annale DS)
Un mot bien parenthésé est une chaine de caractères formée uniquement avec des parenthèses ouvrantes
"(" ou fermantes ")" telles que les parenthèses soient « bien emboitées » au sens habituel, par exemple "(()
(()))" ou bien "()(())". À l'inverse, les mots ")()(" ou bien "(()()" sont mal parenthésés. On note, pour
tout 𝑛 ∈ ℕ, 𝐶𝑛 le nombre de mots bien parenthésés formés avec 𝑛 paires de parenthèses ouvrantes-fermantes.
On pose 𝐶0 = 1 (le mot vide "" est considéré comme bien parenthésé) et 𝐶1 = 1 (le mot "()" est l'unique mot
bien parenthésé avec une seule paire de parenthèses).

1. Lister les mots bien parenthésés avec 𝑛 = 2 puis 𝑛 = 3 paires de parenthèses ouvrantes-fermantes.

2. Justifier que tout mot bien parenthésé m peut s'écrire de façon unique comme m = "(s)t" où les mots s
et t sont eux-mêmes bien parenthésés.

3. En déduire que le nombre 𝐶𝑛 vérifie la relation de récurrence :

∀𝑛 ⩾ 1, 𝐶𝑛 =∑
𝑛−1

𝑘=0
𝐶𝑘𝐶𝑛−1−𝑘

4. Pour calculer le nombre 𝐶𝑛, sera-t-il à votre avis plus efficace d'écrire :
• Une fonction récursive ?
• Une fonction itérative qui calcule le terme 𝐶𝑛 ?
• Une fonction itérative qui calcule la liste de tous les 𝐶𝑛 ?

Écrire cette fonction C(n).

5. Vérifier 𝐶4 = 14 puis donner tous les mots bien parenthésés formés avec 4 paires de parenthèses ouvrantes-
fermantes.

Remarque. Les nombre 𝐶𝑛 sont connus sous le nom de nombres de Catalan et interviennent dans de nombreux
problèmes de dénombrement.

Exercice 6 Mots de Fibonacci (TD)
On s'intéresse aux suites de 𝑛 caractères "0" ou "1" telles qu'il n'y ait pas deux "1" consécutifs. Ces suites
sont obtenues de deux façons :
• Soit à partir d'une suite de longueur 𝑛 − 1, à laquelle on rajoute comme premier terme un "0",
• Soit à partir d'une suite de longueur 𝑛 − 2, à laquelle on rajoute "10" au début.

Ainsi le nombre 𝑢𝑛 de telles suites vérifie la relation de Fibonacci 𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2.

Le but cette fois-ci est d'écrire une fonction suites(n) qui produit la liste de tous les mots qu'on peut
obtenir avec 𝑛 caractères. Pour l'écrire façon récursive, l'appel suites(n) va appeler à la fois suites(n-1) et
suites(n-2) et récupérer leurs résultats dans des variables (disons L et M) et former une nouvelle liste P, au
départ vide puis à remplir avec des méthodes append, selon le procédé ci-dessus. On obtient par exemple :

>>> suites(5)

['00000', '00001', '00010', '00100', '00101', '01000', '01001', '01010', '10000',

'10001', '10010', '10100', '10101']

Ici il y a bien 13 mots, et le nombre 13 fait bien partie de la suite de Fibonacci.

Écrire cette fonctions suites(n).

BCPST1B 2025–2026
Lycée Hoche, Versailles

3/4 L.-C. LEFÈVRE

TP 13 Révisions et consolidation 2

Exercice 7 (*) Générer les anagrammes
1. Écrire une fonction anagrammesAB(a ,b) qui renvoie la liste de tous les anagrammes qu'on peut produire

avec seulement les lettres A et B, en utilisant 𝑎 fois la lettre A et 𝑏 fois la lettre B.

Récursivement, ces anagrammes sont tous obtenus en démarrant par la lettre A et en la concaténant à tous
les anagrammes possibles avec autant de B mais 𝑎 − 1 lettres A ; ou bien en démarrant par B concaténé
à tous les anagrammes possibles avec autant de A mais 𝑏 − 1 lettres B. Voici par exemple la liste des
anagrammes sur 3 lettres A et 2 lettres B :

>>> anagrammesAB(3, 2)

['AAABB', 'AABAB', 'AABBA', 'ABAAB', 'ABABA', 'ABBAA', 'BAAAB', 'BAABA', 'BABAA',

'BBAAA']

2. Plus généralement, écrire une fonction liste_anagrammes(C) qui prend en argument une liste C de longueur
26 (comme dans l'exercice 4), donnant combien de fois doit apparaitre chaque lettre de l'alphabet, et qui
renvoie la liste de tous les anagrammes possibles sur cet ensemble de lettres.

Exercice 8 (**) Permutations
Écrire une fonction permutations(n) qui renvoie une liste de toutes les permutations possibles de l'ensemble
⟦1, 𝑛⟧. On doit par exemple avoir

>>> permutations(3)

[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

Récursivement, un ordre naturel consiste à récupérér la liste des permutations de ⟦1, 𝑛 − 1⟧ et à insérer, dans
chacune de ces permutations, le nombre 𝑛 à chacune des positions possibles ; l'ordre obtenu pour l'énumération
des permutations dépend de l'ordre des opérations effectuées. Pour « insérer » on pourra utiliser à la fois les
tranches L[a:b] et l'opération de concaténation + entre listes.

BCPST1B 2025–2026
Lycée Hoche, Versailles

4/4 L.-C. LEFÈVRE

