TP 13
Révisions et consolidation 2

s N
Exercice 1 Nouwvel an

1. Ecrire une fonction récursive decompte(n) qui affiche un décompte puis souhaite la bonne année. Par
exemple avec n = 5 on veut le résultat suivant :

>>> decompte (5)

=N WS o

Bonne année !!!

\2. Que se passe-t-il si dans le programme on inverse 1'ordre des lignes print et decompte(n-1) 7

p
Exercice 2 Classique classique
1. Ecrire une fonction factoriel(n), qui prend en argument un entier n € N et renvoie la valeur de n!, de
facon récursive.

2. Pour tous entiers n € N et k£ € N, le nombre d'arrangements A* est défini par

0 sik>n
(nfi!kﬂ:nx(n—l)X"'X<n_k+1>Sinon

Ecrire une fonction arrangement (n, k) qui calcule le nombre d'arrangements en utilisant une boucle
for.

3. Pouvez-vous écrire cette méme fonction de fagon récursive ?

4. Selon le paradoze des anniversaires, le nombre de fagons d'attribuer a k personnes leur date d'anniversaire
parmi 365 jours de facon & ce qu'au moins deux personnes soient nées le méme jour est égal & 365% — A%
(c'est le complémentaire de : attribuer a k personnes des dates toutes différentes parmi 365). La probabilité
qu'au moins deux personnes aient la méme date d'anniversaire est donc

1
~ 365F

A 4 k1
(365"7 —A§65) =1 365 _ 1 _ (365 36 y 365+>

_ — X X e
Pk 365+ 365 365 365

Ecrire une fonction anniversaires(n) qui affiche, pour k de 1 & n, & la fois le nombre k et la probabilité
py, ci-dessus ; et tester avec n = 50.

)

Remarque. On trouve les fonctions suivantes dans le module math, & importer avec import math :
e factorial(n) : la factorielle de n.
e perm(n, k) : nombre d'arrangements de k objets parmi n, appelé en anglais nombre de permutations.
e comb(n, k) : coefficient binomial (7), appelé en anglais nombre de combinaisons.

Si on peut se permettre de les utiliser parfois, il s'agit d'une question tres tres classique de savoir les ré-écrire.
Pour que le programme soit efficace, il ne faut pas calculer (nﬁi'k)' en calculant la factorielle de chacun de ces
deux termes puis en divisant — cela fait apparaitre des nombres tres tres grands alors que beaucoup de termes
se simplifient dans la fraction — mais 1'écrire comme un seul produit.

BCPST1B 2025-2026 1/4 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 13 Révisions et consolidation 2

-

\

N
Exercice 3 Palindromes

On rappelle qu'un mot est un palindrome s'il se lit aussi bien de gauche a droite que de droite a gauche, par
exemple le mot "kayak" ou le prénom "anna".

On souhaite écrire une fonction est_palindrome(m) qui prend en argument une chaine de caracteres m et
qui renvoie True si m est un palindrome et False sinon. Mais dans ce TP, on souhaite que la fonction soit
récursive... La condition d'étre un palindrome se formule bien récursivement a partir du premier caractére m[0],
du dernier caractere m[-1], et du mot restant (tranche) m[1:-1].

1. Au brouillon, proposer une formulation récursive du probléme. Que se passe-t-il si le mot de départ était
de longueur paire ? Et s'il était de longueur impaire 7

2. Ecrire la fonction récursive est_palindrome (m).)

-

N
Exercice 4 Le compteur d'anagrammes (annale DS)

On souhaite écrire un programme pour dénombrer tous les anagrammes d'un mot. Pour cela, on a besoin
d'une fonction factoriel(n) et de compter combien de fois apparait chaque lettre. Pour simplifier, on
suppose que nos mots sont écrits uniquement avec les 26 lettres de 1'alphabet en minuscule (pas d'accents,
pas de majuscules, pas d'autres signes de ponctuation) et on donne la variable Python alphabet =
"abcdefghijklmnopqrstuvwxyz". Il est alors pratique de numéroter les lettres a partir de 0, ainsi a est la
lettre 0 et z est la lettre 25.

1. Ecrire, si ce n'est pas déja fait, la fonction factoriel(n).

2. Ecrire une fonction numero(x) qui prend en argument un caractére seul x et renvoie son numéro en tant
que lettre de l'alphabet.

3. Ecrire alors une fonction compte (m) qui prend en argument une chaine de caractéres m et qui renvoie une
liste C de longueur exactement 26, telle que pour tout indice j, C[j] est le nombre de fois ou la lettre
numérotée j apparait dans m.

4. En déduire la fonction anagrammes(m) qui renvoie le nombre d'anagrammes du mot m.

On rappelle qu'on 1'obtient a partir de la factorielle de la longueur du mot, divisée par le produit des
factorielles des nombres de fois que chaque lettre apparait. Comme 0! = 1 il est cohérent de considérer que
les lettres qui n'apparaissent pas apparaissent en fait 0 fois (ce n'est pas un cas a traiter a part).

5. A partir des fonctions précédentes, écrire une fonction sont_anagrammes(m, s) qui renvoie True si les
mots donnés par les chaines de caractéres m et s sont bien anagrammes ['un de l'autre, et False sinon.

BCPST1B 2025-2026 2/4 L.-C. LEFEVRE
Lycée Hoche, Versailles

TP 13 Révisions et consolidation 2

e a
Exercice 5 Une petite parenthése enchantée (annale DS)

Un mot bien parenthésé est une chaine de caractéres formée uniquement avec des parenthéses ouvrantes
"(" ou fermantes ") " telles que les parentheses soient « bien emboitées » au sens habituel, par exemple " (()
(O))" ou bien ") (O)". A l'inverse, les mots ") () (" ou bien "(() O" sont mal parenthésés. On note, pour
tout n € N, C,, le nombre de mots bien parenthésés formés avec n paires de parentheses ouvrantes-fermantes.
On pose C, = 1 (le mot vide "" est considéré comme bien parenthésé) et C; =1 (le mot " ()" est l'unique mot
bien parenthésé avec une seule paire de parentheses).

1. Lister les mots bien parenthésés avec n = 2 puis n = 3 paires de parenthéses ouvrantes-fermantes.

2. Justifier que tout mot bien parenthésé m peut s'écrire de fagon unique comme m = "(s)t" ou les mots s
et t sont eux-mémes bien parenthésés.

3. En déduire que le nombre C,, vérifie la relation de récurrence :

4. Pour calculer le nombre C,,, sera-t-il a votre avis plus efficace d'écrire :
o Une fonction récursive 7
o Une fonction itérative qui calcule le terme C,, 7
o Une fonction itérative qui calcule la liste de tous les C,, ?

Ecrire cette fonction C(n).

5. Vérifier C; = 14 puis donner tous les mots bien parenthésés formés avec 4 paires de parentheses ouvrantes-
fermantes.

Remarque. Les nombre C,, sont connus sous le nom de nombres de Catalan et interviennent dans de nombreux
problémes de dénombrement.

\ J
(. . . \
Exercice 6 Mots de Fibonacci (TD)
On s'intéresse aux suites de n caracteres "0" ou "1" telles qu'il n'y ait pas deux "1" consécutifs. Ces suites
sont obtenues de deux fagons :
e Soit a partir d'une suite de longueur n — 1, a laquelle on rajoute comme premier terme un "0",
e Soit a partir d'une suite de longueur n — 2, a laquelle on rajoute "10" au début.
Ainsi le nombre u,, de telles suites vérifie la relation de Fibonacci u,, = u,,_; + u,,_5.
Le but cette fois-ci est d'écrire une fonction suites(n) qui produit la liste de tous les mots qu'on peut
obtenir avec n caracteres. Pour 1'écrire facon récursive, l'appel suites(n) va appeler a la fois suites(n-1) et
suites(n-2) et récupérer leurs résultats dans des variables (disons L et M) et former une nouvelle liste P, au
départ vide puis a remplir avec des méthodes append, selon le procédé ci-dessus. On obtient par exemple :
>>> suites(5)
['00000', '000OO1', '00010', '00100', '00101', '01000', '01001', '01010', '10000',
'10001', '10010', '10100', '10101']
Ici il y a bien 13 mots, et le nombre 13 fait bien partie de la suite de Fibonacci.
\E’)crire cette fonctions suites(n).)
BCPST1B 2025-2026 3/4 L.-C. LEFEVRE

Lycée Hoche, Versailles

TP 13 Révisions et consolidation 2

. B
Exercice 7 (*) Générer les anagrammes
1. Ecrire une fonction anagrammesAB(a ,b) qui renvoie la liste de tous les anagrammes qu'on peut produire
avec seulement les lettres A et B, en utilisant a fois la lettre A et b fois la lettre B.
Récursivement, ces anagrammes sont tous obtenus en démarrant par la lettre A et en la concaténant & tous
les anagrammes possibles avec autant de B mais a — 1 lettres A ; ou bien en démarrant par B concaténé
a tous les anagrammes possibles avec autant de A mais b — 1 lettres B. Voici par exemple la liste des
anagrammes sur 3 lettres A et 2 lettres B :
>>> anagrammesAB(3, 2)
["AAABB', 'AABAB', 'AABBA', 'ABAAB', 'ABABA', 'ABBAA', 'BAAAB', 'BAABA', 'BABAA',
'"BBAAA']
2. Plus généralement, écrire une fonction liste_anagrammes (C) qui prend en argument une liste C de longueur
26 (comme dans 1'exercice 4), donnant combien de fois doit apparaitre chaque lettre de 1'alphabet, et qui
L renvoie la liste de tous les anagrammes possibles sur cet ensemble de lettres.)
. : - B
Exercice 8 (**) Permutations
Ecrire une fonction permutations(n) qui renvoie une liste de toutes les permutations possibles de 1'ensemble
[1,n]. On doit par exemple avoir
>>> permutations(3)
tf1, 2, 31, 1, 3, 21, [2, 1, 3], [2, 3, 1], [3, 1, 21, [3, 2, 1]]
Récursivement, un ordre naturel consiste a récupérér la liste des permutations de [1,n — 1] et a insérer, dans
chacune de ces permutations, le nombre n & chacune des positions possibles ; I'ordre obtenu pour I'énumération
des permutations dépend de l'ordre des opérations effectuées. Pour «insérer » on pourra utiliser a la fois les
\tranches L[a:b] et l'opération de concaténation + entre listes.)
BCPST1B 2025-2026 4/4 L.-C. LEFEVRE

Lycée Hoche, Versailles

