DS 6 Mathématiques

Correction
Exercice
o I On integre par parties 1 x arctan(Q) :
u(Q) =0 u'(Q)=1
, 1
v(Q) = arctan(Q) v'(Q) = o

qui sont bien continues sur [0, 1] et alors

1 Lo
I = {@arctan(@)}o —/0 Wd@

Dans cette derniére on reconnait une primitive en 1 In(1 + ©?), de plus arctan(1) = Z. Donc :
T 1 !

I= (7 x 1—0) —|ZIn(1 + 02
4 2 0

soit

(5)

o J On pose x = t? : c’est le changement de variables donné par la fonction ¢ : ¢ s t? définie sur [0,In(3)] &
valeurs dans [0,1n?(3)] qui est bien dérivable avec ¢’ (t) = 2t, autrement dit pour la « forme différentielle »

VT dx = 2tel dt

ce qui rameéne ainsi le calcul a

In(3) In(3)
J:/ 2tefdt:2/ tetdt = J
0 0

Cette derniére est une intégration par parties classique : on pose

d’ou

(6)

0
soit
| ] =61n(3) — 4| (12)
e K D’abord on a bien 2u? + Tu + 3 = (2u + 1)(u + 3). Analyse : on cherche (a,b) € R? tel que
1 U a b
v R —3,—= = 13
ve \{ ’ 2}’ 2 +Tut3 2utl  ut3 (13)
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Ceci se regroupe en
u ~ (a+2b)u+ (3a+b)

= 14
2u? 4+ Tu+3 (2u+1)(u+ 3) (14)
et on veut donc
2b=1
a+ (15)
3a+b=0
On trouve alors a = —é et b= %
Synthese : on a alors bien
1 U 1 1 3 1
Vu € R —3,—= _ == - 1
ve \{ 5 2}7 2u? + Tu+ 3 5X2u+1+5xu+3 (16)
Par linéarité on obtient alors
1 [t d S|
K:_/ u +/ v (17)
5/, 2u+1 5J u+3
Calcul des primitives avec In, les termes & intégrer sont strictement positifs sur [1,4] :
111 to3 4
K=—2|-ln@2u+1)| +2 [m(u + 3)] (18)
5(2 ;0 1
Calcul et simplification avec In(4) = 21In(2) et In(9) = 21n(3) :
K=—Sm2) - Lme +3n (19)
=—In(2)— —1n —1In
5 10 5
Probléeme 1
1. On trouve des primitives directement :
1 1
z" 1
) ndr = = =71 20
0 /Ox v [n+1]0 nt1 om0 (20)

et (attention aux signes et a l’ordre des bornes)

1 1

1—2x)" 1

o= [ == |[SO2] g, (21)
’ 0 n—+1 0 n—+1 ’

2. On pose t =1 —x, ce qui est la méme chose que x =1 —t. Alorsx =0 correspond at=1letxz=1at=0,
et on a bien dx = —dt et donc pour la forme différentielle

2P(1—2z)?de = —(1 —t)Ptedt (22)
On applique donc bien la formule du changement de variable avec ¢(t) =1 —t:

0
L,=-— /1 (1— t)Padt (23)

On peut alors utiliser le signe moins et changer I'ordre des bornes, ainsi que 1'ordre du produit :

1
I, = /0 (1 —tpde =1, (24)

Remarque : cela se passe toujours ainsi pour un changement de variables par une fonction décroissante. Les
bornes apparaissent d’abord dans le mauvais sens, mais en méme temps @’ est négative et fait apparaitre un

signe moins, qui permet de remetlre les bornes dans le bon sens. Dans tous les cas lintégrale I, . est positive
K

car c’est l'intégrale d’une fonction positive sur [0,1], et I, , aussi, donc on ne peut pas trowver I, , = —I, .
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3. Dans I, .4, on integre par parties en posant

u(z) = (1 —z)?! u'(z) = —(g+1)(1 —x)9 (25)
v (z) =P v(x) = P (26)

alors
L 1= (1—z)7tt x Zj‘lL_/o (—(q—l—l)(l—m)q X ;Zl) dz (27)

Le terme entre crochets est nul a la fois pour t =0 et z = 1.
Attention : cela nécessite que les puissances soient strictement positives... P n’est pas nul enxt =0 sip =0/
Par linéarité on déduit alors directement

q+1

1
patl = ] / A —a)tde =1, (28)
0

4. Démontrons cette propriété par récurrence. Attention a lordre des quantificateurs : le Vq est devant (on a
besoin de passer de ¢ & g + 1) et le Vp est sous ’hypothese de récurrence (on va appliquer P(q) pour des
valeurs différentes de p).

 Initialisation : pour ¢ = 0, il s’agit de démontrer :

p!
VpeN, [ ,= 29
p € ) p,0 (p + 1)| ( )
Or on sait que I, , = zﬁ’ et (;;27!1)! = ;Tlrl aussi. Donc ‘ P(0) est vraie ‘
o Hérédité : soit ¢ € N, supposons P(q) :
I g!
vpeN, [ =2 (30)

P (pta+ 1)

On se donne alors un p € N et on applique alors évidemment la relation démontrée a la question
précédente :

qg+1 g+1 (p+ 1!
g+l = T 1 p+lg T X !
p+1 p+1 (p+1+¢g+1)!
Cela est bien valide car on applique 'hypothése P(q), avec une autre valeur de p mais le Vp est dans
I’hypotheése de récurrence! Alors en jouant sur les factorielles
pl(¢g+1)! pl(qg+1)!

I = = 32
PO (pp T4+ D) (p+(g+1)+ 1) (82)

(31)

et ceci est bien ce qu’on veut au rang g + 1, quelque soit p. Donc ‘T(q + 1) est vraie ‘

En conclusion on a bien montré P(q), pour tout entier g, ou P(q) contientle quantificateur Vp. Donc la
formule est vraie pour tous p et tous q.

5. (a) Développons avec le ‘binéme de Newton‘ (les coefficients binomiaux ne vont pas apparaitre de nulle
part!) : pour tout n € N :

Ve e 0,1, (1—z)"= f: (Z) (—1)kz* (33)

k=0

et donc

Par linéarité alors

L., = s —1)FantF | do = (7 —1)k ll‘n+kd$ 35
/(;(k)< ) ) k(k>< " (35)
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Or on calcule comme toujours

1 . xn+k+1 1 1
"t de = = 36
/Ox v [n—i—k—i—l]o ntk+1 (36)
et on reconnait alors directement | I, , =S, |
(b) Par la formule démontrée par récurrence, on déduit alors :
n!n!

S, = ——" 37
" (2n+1)! (37)

Rappelons que (2?;1) = (nz,’;),' 11 suffit alors de remarquer

2n\  (2n+1)x (2n)!  (2n+1)! (38)
n )  (2n+1)xnln!  (2n+1)n!n!
pour trouver directement
1
S, = 39
" Bnen T )
Probléme 2
1. On forme
—1-X 5 6
A— N = 2 2—X 0 (40)
—2 2 4—A
Pour échelonner on place la ligne L, au-dessus, et L; en dessous :
2—-\A 0
A=N; — | —2 24—\ (41)
—1-X 5 6
Le rang est au moins 1. On peut alors effectuer Ly < Ly + Ly et Ly <= 2L5 + (1 + X)L :
2=\ 0
A-Xp— | 0 4—X 4—2) (42)
0 o 12
ot on calcule & part le coefficient : « = 12+ (1 4+ A)(2— ) = 12+ X — A2
Il est alors plus facile de distinguer le cas A = 4 : alors
2—-X 0 2-X 0
A— AL
3—>000L;2300 (43)
0 0 12 0 0 0
donc le rang est 2.
Si A # 4 alors on peut simplifier L, :
2\ 0 2-\ 0
A—
Ay — [0 1 1) o]0 1 (44)
0 o 12 0 0 B

ott le coefficient 3 se calcule aussi & part : 3 =12 — (124+ X — A2) = =X+ A2 = \(A —1). Ainsi pour A\ # 4 :

2— A 0
A=A — | 0 1 (45)
0 0 [AxA—1)

BCPSTI1B 20252026 4/8 L.-C. LEFEVRE
Lycée Hoche, Versailles



DS 06 correction Mathématiques

On lit alors que le rang est au moins 2; il est 3 si le coefficient en bas & droite est non-nul c’est-a-dire A\ # 0
et A # 1, sinon il est 2.

En résumé :

reng(4) — {2 si A e {0,1,4} (46)

3 sinon

2. On rédige ici cette question avec la méthode « naive » ; la méthode de former la matrice augmentée est certes
élégante, mais n’est pas exigible au programme.
Soient X = (é), Y = (z) des matrices colonnes dans Mj; ;(R). L'équation PX = Y est équivalente au
systéme linéaire

r+y+z=u
(S): s —2x—y+z=v (47)
2v 4y =w

On échelonne alors, d’abord avec Ly <— Ly 4+ 2L, et Ly <— Ly — 2L :
+y+ z2=u

(S) = y+3z=2u+v (48)
—y—2z=—-2u+w

puis avec Lg <= Ly + Ly :

+ y+ z=u
(S) <= [y]+32=2u+v (49)
=v+w
A ce stade le systéme est échelonné et ce qui correspond déja au fait que PX = Y admet une

unique solution pour X, quelque soit Y : la matrice P est .

On résout alors en remontant : d’abord z = v + w puis ¥y = 2u + v — 3w soit y = 2u — 2v — 3w, et enfin
T = —u + v+ 2w. On ré-écrit tout cela comme la colonne X donnée en fonction de Y par une matrice :

—1 5 6 T u x -1 1 2 U
CHO-0-0-GEaE -
—2 2 4 z w z 0 1 1 w
-1 1 2
Pl = ( 2 =2 —3) (51)
0 1 1

-1 1 2 —1 5 6 1 1 1 1 0 0
2 2 3||2 20|22 -1 1]=[000 (52)
0 1 1 —2 2 4 2 1 0 0 0 4

ce qui est exactement | P"'AP = D

a00
4. (a) On cherche une racine carrée de D qui soit une matrice diagonale : on pose @ = (8 g 0) pour
¥

Cela démontre que :

3. Calcul :

(a, B,v) € R3. Alors Q est une racine carrée de D si et seulement si :

> 0 0 1 00
Q*=D<= [0 B 0|=(000 (53)
0 0 2 0 0 4

Ceci est équivalent & a? = 1 et 82 = 0 et 42 = 4. On trouve alors 4 triplets de solutions

(o, B,7) € {(1,0,2), (—1,0,2), (1,0, —2), (—1,0,—2)} (54)
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ce qui correspond aux 4 matrices

100 -1 0 0 1 0 O -1 0 0
Q,=[0 0 0 Q=0 00 Qs=[0 0 o0 Q=10 0 o (55)
0 0 2 0 0 2 00 —2 0 0 —2
Remarque : Q3 = —Q5 et Q, = —Q;.
Pour Q € M;(R) telle que Q? = D alors
(PQP_1)2 = PQP'PQP!' = PQ*P~! = PDP! (56)

Or Péquation P~*AP = D est équivalente & AP = PD (en multipliant deux deux cotés par P a
gauche) puis & A = PDP~! (en multipliant des deux cotés par P~! & droite). On trouve donc bien

(PQP*1)2 = A|, ce qui nous donne en théorie 4 matrices.

Il reste éventuellement & vérifier qu’elles sont bien distinctes... Mais si on avait PQP~! = PQ’P~! pour
deux matrices @, Q" parmi Q;,Qs,Qs3,Q, alors encore en multipliant par P! & gauche et par P a
droite on trouverait Q = Q’. On a donc bien trouvé 4 racines carrées distinctes de A.

Remarque : Uapplication Q — PQP™! est bijective, d’inverse R+ P~'RP.

En résumé on a obtenu les 4 matrices racines carrées de A (calcul) :

-1 3 4 1 1 0
R, = PQlP_1 =12 0 —2 Ry = PQ2P_1 =|-2 4 6 (57)
-2 2 4 2 -2 —4
-1 -1 0 1 -3 —4
Rs; = PQ?)P_1 =12 —4 —6 R, = PQlP_1 =|-2 0 2 (58)
-2 2 4 2 -2 —4
Remarque : la encore R; = —R,y et Ry = —R;.

Sion a S € M;(R) telle que S? = D alors

SD = 852 = §3 = §25 = DS (59)

ce qui signifie précisément que ‘ S et D commutent ‘

Remarque : c’est la propriété d’associativité qui a pour conséquence qu’une matrice commute avec ses

puissances, le produit SSS peut s’associer de deux facons différentes.
S1,1 S1,2 S1,3

On pose § = <52‘,1 52,2 52,3> € M4(R). La condition SD = DS est équivalente a

S3,1 83,2 53,3
s110 0 431,3 S11 S1,2 S1,3
3271 0 452’3 = 0 O O (60)
S3.1 0 45373 45371 45372 45373

En tant que systeme d’équations a 9 inconnues, cela donne

* 11 = $p sans autre condition : c’est une variable libre,

° 81,2 - 07

o 45y 3 =5y 3 donc sy 3 =0,

* So1 = 0,

o 4sy 3 =0 donc 555 =0,

o S31 =483, donc s3; =0,

o 4555 =0donc s3 5, =0,

o 4535 = 4s3 3 donc s; 5 est une variable libre,

o il reste sy 5 qui n’apparait pas, qui est aussi une variable libre.
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En résumé la condition est équivalente a

s50 0 0
SD=DS<«=S=| 0 sy5 0 (61)
0 0 s34

c’est-a~dire que | S est une matrice diagonale ‘

(¢) Si @ est une racine carrée de D, alors par la question précédente @ est diagonale, et c’est le cas que
nous avons traité a la question 4. Ce sont donc bien les 4 racines carrées de D.
On peut alors on déduire que nous avons trouvé toutes les racines carrées de A : soit R une racine
carrée de A, alors R? = A ce qui est équivalent & (P_lRP)2 = P71 AP, donc la matrice Q = P~'RP
est une racine carrée de D. On retrouve alors R = PQP~!.

En résumé ‘on a trouvé exactement toutes les racines carrées de A ‘

Exercice d’informatique

1. La syntaxe correcte est : les listes de longueur p indexées par j sont a 'intérieur, donc les lignes sont
de longueur p (c’est le nombre de colonnes), et on répete cette construction n fois (pour avoir une liste de
n lignes)...

Mais la syntaxe | (ii) | est tout a fait correcte aussi car les noms des variables n’ont pas d’importance dans
cette expression.

2. Vuen TP.

def identité(n):
A = [[0 for j in range(n)] for i in range(n)]
for i in range(n):
A[iI[i] = 1
return 1

3. Double boucle pour tester 1’égalité des coefficients uns par uns. Remarque : deux matrices égales doivent
avoir méme taille, sinon elles ne sont pas égales, il est donc plus cohérent de renvoyer False que de vouloir
renvoyer une erreur. Il n’y a pas de fonction déja donnée pour la taille de la matrice...

def sont_égales(A, B):

n = len(A)
p = len(A[0])
n2 = len(B)
p2 = len(B[0])

if n !'= n2 or p != p2:
return False
for i in range(n):
for j in range(p):
if A[i1[j] '= B[il[j]:
return False
return True

4. Compteur et double boucle.

def nombre_coeff_positifs(A):

n = len(A)
p = len(A[0])
c =0

for i in range(n):
for j in range(p):
if A[i][j] >= O:
c=c¢c+1

return c
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5. Vu en TP. On suppose A € M,, ,(R) et B € M, ,(R) (elles sont déja multipliables).

def produit(A, B):

n = len(A)

p = len(A[0])

q = len(B[0])

P = [[0 for j in range(q)] for i in range(n)]

for i in range(n):

for j in range(q):
for k in range(p):
P[il[j] = P[il[j] + A[il[k] * B[k][j]

return P

L’ordre de la triple boucle n’a en fait pas d’importance : calcule tous les A, , x By ; et on les somme pour
contribuer a [AB]; ;.

6. La matrice doit étre carrée de taille n, elle doit avoir n? coefficients positifs ou nuls, et vérifier AU = U. 1l
suffit donc d’introduire U.

def est_stochastique(A):

n = len(A)

p = len(A[0])

if n !'= p:
return False

if nombre_coeff_positifs(A) != n#*n:
return False

U = [[1] for j in range(n)]

if not sont_égales(produit(A, U), U):
return False

return True

Ce n’est pas tres élégant, mais utilise les fonctions précédentes.

Démontration de la remarque : si A et B sont toutes les deux carrées de méme taille et stochastiques, alors AB
est encore carrée et a encore tous ses coefficients positifs (multiplier des matrices dont tous les coefficients sont
positifs ne peut pas faire apparaitre des coefficients négatifs!); de plus on a par hypothése AU = U et BU = U
donc (AB)U = A(BU) = AU =U.
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