
DS 6 Mathématiques
Correction

Exercice
• 𝐼 On intègre par parties 1 × arctan(♡) :

𝑢(♡) = ♡ 𝑢′(♡) = 1 (1)

𝑣(♡) = arctan(♡) 𝑣′(♡) = 1
1 + ♡2 (2)

qui sont bien continues sur [0, 1] et alors

𝐼 = [♡ arctan(♡)]
1

0
− ∫

1

0

♡
1 + ♡2 d♡ (3)

Dans cette dernière on reconnait une primitive en 1
2 ln(1 + ♡2), de plus arctan(1) = 𝜋

4 . Donc :

𝐼 = (𝜋
4

× 1 − 0) − [1
2
ln(1 + ♡2)]

1

0
(4)

soit

𝐼 = 𝜋
4

− ln(2)
2

(5)

• 𝐽 On pose 𝑥 = 𝑡2 : c’est le changement de variables donné par la fonction 𝜑 ∶ 𝑡 ↦ 𝑡2 définie sur [0, ln(3)] à
valeurs dans [0, ln2(3)] qui est bien dérivable avec 𝜑′(𝑡) = 2𝑡, autrement dit pour la « forme différentielle »

𝑒
√

𝑥 d𝑥 = 2𝑡𝑒𝑡 d𝑡 (6)

ce qui ramène ainsi le calcul à

𝐽 = ∫
ln(3)

0
2𝑡𝑒𝑡 d𝑡 = 2 ∫

ln(3)

0
𝑡𝑒𝑡 d𝑡 = 𝐽 (7)

Cette dernière est une intégration par parties classique : on pose

𝑢(𝑡) = 𝑡 𝑢′(𝑡) = 1 (8)
𝑣′(𝑡) = 𝑒𝑡 𝑡(𝑡) = 𝑒𝑡 (9)

d’où

𝐽 = 2 ([𝑡𝑒𝑡]
ln(3)

0
− ∫

ln(3)

0
1 × 𝑒𝑡 d𝑡) (10)

Tout se calcule alors assez directement :

𝐽 = 2 ((3 ln(3) − 0) − [𝑒𝑡]
ln(3)

0
) (11)

soit
𝐽 = 6 ln(3) − 4 (12)

• 𝐾 D’abord on a bien 2𝑢2 + 7𝑢 + 3 = (2𝑢 + 1)(𝑢 + 3). Analyse : on cherche (𝑎, 𝑏) ∈ ℝ2 tel que

∀𝑢 ∈ ℝ ∖ { − 3, −1
2

}, 𝑢
2𝑢2 + 7𝑢 + 3

= 𝑎
2𝑢 + 1

+ 𝑏
𝑢 + 3

(13)
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Ceci se regroupe en
𝑢

2𝑢2 + 7𝑢 + 3
= (𝑎 + 2𝑏)𝑢 + (3𝑎 + 𝑏)

(2𝑢 + 1)(𝑢 + 3)
(14)

et on veut donc

{
𝑎 + 2𝑏 = 1
3𝑎 + 𝑏 = 0

(15)

On trouve alors 𝑎 = −1
5 et 𝑏 = 3

5 .
Synthèse : on a alors bien

∀𝑢 ∈ ℝ ∖ { − 3, −1
2

}, 𝑢
2𝑢2 + 7𝑢 + 3

= −1
5

× 1
2𝑢 + 1

+ 3
5

× 1
𝑢 + 3

(16)

Par linéarité on obtient alors

𝐾 = −1
5

∫
4

1

d𝑢
2𝑢 + 1

+ 3
5

∫
4

1

d𝑢
𝑢 + 3

(17)

Calcul des primitives avec ln, les termes à intégrer sont strictement positifs sur [1, 4] :

𝐾 = −1
5

[1
2
ln(2𝑢 + 1)]

4

1
+ 3

5
[ln(𝑢 + 3)]

4

1
(18)

Calcul et simplification avec ln(4) = 2 ln(2) et ln(9) = 2 ln(3) :

𝐾 = −6
5
ln(2) − 1

10
ln(3) + 3

5
ln(7) (19)

Problème 1
1. On trouve des primitives directement :

𝐼𝑛,0 = ∫
1

0
𝑥𝑛 d𝑥 = [ 𝑥𝑛

𝑛 + 1
]

1

0
= 1

𝑛 + 1
= 𝐼𝑛,0 (20)

et (attention aux signes et à l’ordre des bornes)

𝐼0,𝑛 = ∫
1

0
(1 − 𝑥)𝑛 d𝑥 = [−(1 − 𝑥)𝑛

𝑛 + 1
]

1

0
= 1

𝑛 + 1
= 𝐼0,𝑛 (21)

2. On pose 𝑡 = 1 − 𝑥, ce qui est la même chose que 𝑥 = 1 − 𝑡. Alors 𝑥 = 0 correspond à 𝑡 = 1 et 𝑥 = 1 à 𝑡 = 0,
et on a bien d𝑥 = −d𝑡 et donc pour la forme différentielle

𝑥𝑝(1 − 𝑥)𝑞 d𝑥 = −(1 − 𝑡)𝑝𝑡𝑞 d𝑡 (22)

On applique donc bien la formule du changement de variable avec 𝜑(𝑡) = 1 − 𝑡 :

𝐼𝑝,𝑞 = − ∫
0

1
(1 − 𝑡)𝑝𝑡𝑞 d𝑡 (23)

On peut alors utiliser le signe moins et changer l’ordre des bornes, ainsi que l’ordre du produit :

𝐼𝑝,𝑞 = ∫
1

0
𝑡𝑞(1 − 𝑡)𝑝 d𝑡 = 𝐼𝑞,𝑝 (24)

Remarque : cela se passe toujours ainsi pour un changement de variables par une fonction décroissante. Les
bornes apparaissent d’abord dans le mauvais sens, mais en même temps 𝜑′ est négative et fait apparaitre un
signe moins, qui permet de remettre les bornes dans le bon sens. Dans tous les cas l’intégrale 𝐼𝑝,𝑞 est positive
car c’est l’intégrale d’une fonction positive sur [0, 1], et 𝐼𝑞,𝑝 aussi, donc on ne peut pas trouver 𝐼𝑝,𝑞 = −𝐼𝑞,𝑝.
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3. Dans 𝐼𝑝,𝑞+1, on intègre par parties en posant

𝑢(𝑥) = (1 − 𝑥)𝑞+1 𝑢′(𝑥) = −(𝑞 + 1)(1 − 𝑥)𝑞 (25)

𝑣′(𝑥) = 𝑥𝑝 𝑣(𝑥) = 𝑥𝑝+1

𝑝 + 1
(26)

alors

𝐼𝑝,𝑞+1 = [(1 − 𝑥)𝑞+1 × 𝑥𝑝+1

𝑝 + 1
]

1

0
− ∫

1

0
(−(𝑞 + 1)(1 − 𝑥)𝑞 × 𝑥𝑝+1

𝑝 + 1
) d𝑥 (27)

Le terme entre crochets est nul à la fois pour 𝑥 = 0 et 𝑥 = 1.
Attention : cela nécessite que les puissances soient strictement positives… 𝑥𝑝 n’est pas nul en 𝑥 = 0 si 𝑝 = 0 !
Par linéarité on déduit alors directement

𝐼𝑝,𝑞+1 = 𝑞 + 1
𝑝 + 1

∫
1

0
𝑥𝑝+1(1 − 𝑥)𝑞 d𝑥 = 𝐼𝑝+1,𝑞 (28)

4. Démontrons cette propriété par récurrence. Attention à l’ordre des quantificateurs : le ∀𝑞 est devant (on a
besoin de passer de 𝑞 à 𝑞 + 1) et le ∀𝑝 est sous l’hypothèse de récurrence (on va appliquer 𝒫(𝑞) pour des
valeurs différentes de 𝑝).
• Initialisation : pour 𝑞 = 0, il s’agit de démontrer :

∀𝑝 ∈ ℕ, 𝐼𝑝,0 = 𝑝!
(𝑝 + 1)!

(29)

Or on sait que 𝐼𝑝,0 = 1
𝑝+1 , et

𝑝!
(𝑝+1)! = 1

𝑝+1 aussi. Donc 𝒫(0) est vraie .
• Hérédité : soit 𝑞 ∈ ℕ, supposons 𝒫(𝑞) :

∀𝑝 ∈ ℕ, 𝐼𝑝,𝑞 = 𝑝! 𝑞!
(𝑝 + 𝑞 + 1)!

(30)

On se donne alors un 𝑝 ∈ ℕ et on applique alors évidemment la relation démontrée à la question
précédente :

𝐼𝑝,𝑞+1 = 𝑞 + 1
𝑝 + 1

𝐼𝑝+1,𝑞 = 𝑞 + 1
𝑝 + 1

× (𝑝 + 1)! 𝑞!
(𝑝 + 1 + 𝑞 + 1)!

(31)

Cela est bien valide car on applique l’hypothèse 𝒫(𝑞), avec une autre valeur de 𝑝 mais le ∀𝑝 est dans
l’hypothèse de récurrence ! Alors en jouant sur les factorielles

𝐼𝑝,𝑞+1 = 𝑝! (𝑞 + 1)!
(𝑝 + 1 + 𝑞 + 1)!

= 𝑝! (𝑞 + 1)!
(𝑝 + (𝑞 + 1) + 1)!

(32)

et ceci est bien ce qu’on veut au rang 𝑞 + 1, quelque soit 𝑝. Donc 𝒫(𝑞 + 1) est vraie .
En conclusion on a bien montré 𝒫(𝑞), pour tout entier 𝑞, où 𝒫(𝑞) contientle quantificateur ∀𝑝. Donc la
formule est vraie pour tous 𝑝 et tous 𝑞.

5. (a) Développons avec le binôme de Newton (les coefficients binomiaux ne vont pas apparaitre de nulle
part !) : pour tout 𝑛 ∈ ℕ :

∀𝑥 ∈ [0, 1], (1 − 𝑥)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘

)(−1)𝑘𝑥𝑘 (33)

et donc

𝐼𝑛,𝑛 = ∫
1

0
𝑥𝑛 (

𝑛
∑
𝑘=0

(𝑛
𝑘

)(−1)𝑘𝑥𝑘) d𝑥 (34)

Par linéarité alors

𝐼𝑛,𝑛 = ∫
1

0
(

𝑛
∑
𝑘=0

(𝑛
𝑘

)(−1)𝑘𝑥𝑛+𝑘) d𝑥 =
𝑛

∑
𝑘=0

(𝑛
𝑘

)(−1)𝑘 ∫
1

0
𝑥𝑛+𝑘 d𝑥 (35)
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Or on calcule comme toujours

∫
1

0
𝑥𝑛+𝑘 d𝑥 = [ 𝑥𝑛+𝑘+1

𝑛 + 𝑘 + 1
]

1

0
= 1

𝑛 + 𝑘 + 1
(36)

et on reconnait alors directement 𝐼𝑛,𝑛 = 𝑆𝑛 .
(b) Par la formule démontrée par récurrence, on déduit alors :

𝑆𝑛 = 𝑛! 𝑛!
(2𝑛 + 1)!

(37)

Rappelons que (2𝑛
𝑛 ) = (2𝑛)!

𝑛! 𝑛! . Il suffit alors de remarquer

(2𝑛
𝑛

) = (2𝑛 + 1) × (2𝑛)!
(2𝑛 + 1) × 𝑛! 𝑛!

= (2𝑛 + 1)!
(2𝑛 + 1)𝑛! 𝑛!

(38)

pour trouver directement

𝑆𝑛 = 1
(2𝑛

𝑛 )(2𝑛 + 1)
(39)

Problème 2
1. On forme

𝐴 − 𝜆𝐼3 = ⎛⎜
⎝

−1 − 𝜆 5 6
2 2 − 𝜆 0

−2 2 4 − 𝜆
⎞⎟
⎠

(40)

Pour échelonner on place la ligne 𝐿2 au-dessus, et 𝐿1 en dessous :

𝐴 − 𝜆𝐼3 ⟶ ⎛⎜⎜
⎝

2 2 − 𝜆 0
−2 2 4 − 𝜆

−1 − 𝜆 5 6

⎞⎟⎟
⎠

(41)

Le rang est au moins 1. On peut alors effectuer 𝐿2 ← 𝐿2 + 𝐿1 et 𝐿3 ← 2𝐿3 + (1 + 𝜆)𝐿1 :

𝐴 − 𝜆𝐼3 ⟶ ⎛⎜⎜
⎝

2 2 − 𝜆 0
0 4 − 𝜆 4 − 𝜆
0 𝛼 12

⎞⎟⎟
⎠

(42)

où on calcule à part le coefficient : 𝛼 = 12 + (1 + 𝜆)(2 − 𝜆) = 12 + 𝜆 − 𝜆2.
Il est alors plus facile de distinguer le cas 𝜆 = 4 : alors

𝐴 − 𝜆𝐼3 ⟶ ⎛⎜⎜
⎝

2 2 − 𝜆 0
0 0 0
0 0 12

⎞⎟⎟
⎠

⟶
𝐿2↔𝐿3

⎛⎜⎜
⎝

2 2 − 𝜆 0
0 0 12
0 0 0

⎞⎟⎟
⎠

(43)

donc le rang est 2.
Si 𝜆 ≠ 4 alors on peut simplifier 𝐿2 :

𝐴 − 𝜆𝐼3 ⟶ ⎛⎜⎜
⎝

2 2 − 𝜆 0
0 1 1
0 𝛼 12

⎞⎟⎟
⎠

⟶
𝐿3←𝐿3−𝛼𝐿2

⎛⎜⎜
⎝

2 2 − 𝜆 0
0 1 1
0 0 𝛽

⎞⎟⎟
⎠

(44)

où le coefficient 𝛽 se calcule aussi à part : 𝛽 = 12 − (12 + 𝜆 − 𝜆2) = −𝜆 + 𝜆2 = 𝜆(𝜆 − 1). Ainsi pour 𝜆 ≠ 4 :

𝐴 − 𝜆𝐼3 ⟶
⎛⎜⎜
⎝

2 2 − 𝜆 0
0 1 1
0 0 𝜆(𝜆 − 1)

⎞⎟⎟
⎠

(45)
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On lit alors que le rang est au moins 2 ; il est 3 si le coefficient en bas à droite est non-nul c’est-à-dire 𝜆 ≠ 0
et 𝜆 ≠ 1, sinon il est 2.
En résumé :

rang(𝐴) = {
2 si 𝜆 ∈ {0, 1, 4}
3 sinon

(46)

2. On rédige ici cette question avec la méthode « naïve » ; la méthode de former la matrice augmentée est certes
élégante, mais n’est pas exigible au programme.
Soient 𝑋 = (

𝑥
𝑦
𝑧

), 𝑌 = ( 𝑢
𝑣
𝑤

) des matrices colonnes dans ℳ3,1(ℝ). L’équation 𝑃𝑋 = 𝑌 est équivalente au
système linéaire

(𝑆) ∶
⎧{
⎨{⎩

𝑥 + 𝑦 + 𝑧 = 𝑢
−2𝑥 − 𝑦 + 𝑧 = 𝑣

2𝑥 + 𝑦 = 𝑤
(47)

On échelonne alors, d’abord avec 𝐿2 ← 𝐿2 + 2𝐿1 et 𝐿3 ← 𝐿3 − 2𝐿1 :

(𝑆) ⟺
⎧{
⎨{⎩

𝑥 + 𝑦 + 𝑧 = 𝑢
𝑦 + 3𝑧 = 2𝑢 + 𝑣

− 𝑦 − 2𝑧 = −2𝑢 + 𝑤
(48)

puis avec 𝐿3 ← 𝐿3 + 𝐿2 :

(𝑆) ⟺
⎧{
⎨{⎩

𝑥 + 𝑦 + 𝑧 = 𝑢
𝑦 + 3𝑧 = 2𝑢 + 𝑣

𝑧 = 𝑣 + 𝑤
(49)

À ce stade le système est échelonné et de Cramer ce qui correspond déjà au fait que 𝑃𝑋 = 𝑌 admet une
unique solution pour 𝑋, quelque soit 𝑌 : la matrice 𝑃 est inversible .
On résout alors en remontant : d’abord 𝑧 = 𝑣 + 𝑤 puis 𝑦 = 2𝑢 + 𝑣 − 3𝑤 soit 𝑦 = 2𝑢 − 2𝑣 − 3𝑤, et enfin
𝑥 = −𝑢 + 𝑣 + 2𝑤. On ré-écrit tout cela comme la colonne 𝑋 donnée en fonction de 𝑌 par une matrice :

⎛⎜
⎝

−1 5 6
2 2 0

−2 2 4
⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= ⎛⎜
⎝

𝑢
𝑣
𝑤

⎞⎟
⎠

⟺ ⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= ⎛⎜
⎝

−1 1 2
2 −2 −3
0 1 1

⎞⎟
⎠

⎛⎜
⎝

𝑢
𝑣
𝑤

⎞⎟
⎠

(50)

Cela démontre que :

𝑃 −1 = ⎛⎜
⎝

−1 1 2
2 −2 −3
0 1 1

⎞⎟
⎠

(51)

3. Calcul :

⎛⎜
⎝

−1 1 2
2 −2 −3
0 1 1

⎞⎟
⎠

⎛⎜
⎝

−1 5 6
2 2 0

−2 2 4
⎞⎟
⎠

⎛⎜
⎝

1 1 1
−2 −1 1
2 1 0

⎞⎟
⎠

= ⎛⎜
⎝

1 0 0
0 0 0
0 0 4

⎞⎟
⎠

(52)

ce qui est exactement 𝑃 −1𝐴𝑃 = 𝐷

4. (a) On cherche une racine carrée de 𝐷 qui soit une matrice diagonale : on pose 𝑄 = (
𝛼 0 0
0 𝛽 0
0 0 𝛾

) pour

(𝛼, 𝛽, 𝛾) ∈ ℝ3. Alors 𝑄 est une racine carrée de 𝐷 si et seulement si :

𝑄2 = 𝐷 ⟺ ⎛⎜
⎝

𝛼2 0 0
0 𝛽2 0
0 0 𝛾2

⎞⎟
⎠

= ⎛⎜
⎝

1 0 0
0 0 0
0 0 4

⎞⎟
⎠

(53)

Ceci est équivalent à 𝛼2 = 1 et 𝛽2 = 0 et 𝛾2 = 4. On trouve alors 4 triplets de solutions

(𝛼, 𝛽, 𝛾) ∈ {(1, 0, 2), (−1, 0, 2), (1, 0, −2), (−1, 0, −2)} (54)
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ce qui correspond aux 4 matrices

𝑄1 = ⎛⎜
⎝

1 0 0
0 0 0
0 0 2

⎞⎟
⎠

𝑄2 = ⎛⎜
⎝

−1 0 0
0 0 0
0 0 2

⎞⎟
⎠

𝑄3 = ⎛⎜
⎝

1 0 0
0 0 0
0 0 −2

⎞⎟
⎠

𝑄4 = ⎛⎜
⎝

−1 0 0
0 0 0
0 0 −2

⎞⎟
⎠

(55)

Remarque : 𝑄3 = −𝑄2 et 𝑄4 = −𝑄1.
(b) Pour 𝑄 ∈ ℳ3(ℝ) telle que 𝑄2 = 𝐷 alors

(𝑃𝑄𝑃 −1)2 = 𝑃𝑄𝑃 −1𝑃𝑄𝑃 −1 = 𝑃𝑄2𝑃 −1 = 𝑃𝐷𝑃 −1 (56)

Or l’équation 𝑃 −1𝐴𝑃 = 𝐷 est équivalente à 𝐴𝑃 = 𝑃𝐷 (en multipliant deux deux côtés par 𝑃 à
gauche) puis à 𝐴 = 𝑃𝐷𝑃 −1 (en multipliant des deux côtés par 𝑃 −1 à droite). On trouve donc bien

(𝑃𝑄𝑃 −1)2 = 𝐴 , ce qui nous donne en théorie 4 matrices.

Il reste éventuellement à vérifier qu’elles sont bien distinctes… Mais si on avait 𝑃𝑄𝑃 −1 = 𝑃𝑄′𝑃 −1 pour
deux matrices 𝑄, 𝑄′ parmi 𝑄1, 𝑄2, 𝑄3, 𝑄4 alors encore en multipliant par 𝑃 −1 à gauche et par 𝑃 à
droite on trouverait 𝑄 = 𝑄′. On a donc bien trouvé 4 racines carrées distinctes de 𝐴.
Remarque : l’application 𝑄 ↦ 𝑃𝑄𝑃 −1 est bijective, d’inverse 𝑅 ↦ 𝑃 −1𝑅𝑃.
En résumé on a obtenu les 4 matrices racines carrées de 𝐴 (calcul) :

𝑅1 = 𝑃𝑄1𝑃 −1 = ⎛⎜
⎝

−1 3 4
2 0 −2

−2 2 4
⎞⎟
⎠

𝑅2 = 𝑃𝑄2𝑃 −1 = ⎛⎜
⎝

1 1 0
−2 4 6
2 −2 −4

⎞⎟
⎠

(57)

𝑅3 = 𝑃𝑄3𝑃 −1 = ⎛⎜
⎝

−1 −1 0
2 −4 −6

−2 2 4
⎞⎟
⎠

𝑅4 = 𝑃𝑄1𝑃 −1 = ⎛⎜
⎝

1 −3 −4
−2 0 2
2 −2 −4

⎞⎟
⎠

(58)

Remarque : là encore 𝑅3 = −𝑅2 et 𝑅4 = −𝑅1.
5. (a) Si on a 𝑆 ∈ ℳ3(ℝ) telle que 𝑆2 = 𝐷 alors

𝑆𝐷 = 𝑆𝑆2 = 𝑆3 = 𝑆2𝑆 = 𝐷𝑆 (59)

ce qui signifie précisément que 𝑆 et 𝐷 commutent .
Remarque : c’est la propriété d’associativité qui a pour conséquence qu’une matrice commute avec ses
puissances, le produit 𝑆𝑆𝑆 peut s’associer de deux façons différentes.

(b) On pose 𝑆 = (
𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,1 𝑠3,2 𝑠3,3

) ∈ ℳ3(ℝ). La condition 𝑆𝐷 = 𝐷𝑆 est équivalente à

⎛⎜
⎝

𝑠1,1 0 4𝑠1,3
𝑠2,1 0 4𝑠2,3
𝑠3,1 0 4𝑠3,3

⎞⎟
⎠

= ⎛⎜
⎝

𝑠1,1 𝑠1,2 𝑠1,3
0 0 0

4𝑠3,1 4𝑠3,2 4𝑠3,3

⎞⎟
⎠

(60)

En tant que système d’équations à 9 inconnues, cela donne
• 𝑠1,1 = 𝑠1,1 sans autre condition : c’est une variable libre,
• 𝑠1,2 = 0,
• 4𝑠1,3 = 𝑠1,3 donc 𝑠1,3 = 0,
• 𝑠2,1 = 0,
• 4𝑠2,3 = 0 donc 𝑠2,3 = 0,
• 𝑠3,1 = 4𝑠3,1 donc 𝑠3,1 = 0,
• 4𝑠3,2 = 0 donc 𝑠3,2 = 0,
• 4𝑠3,3 = 4𝑠3,3 donc 𝑠3,3 est une variable libre,
• il reste 𝑠2,2 qui n’apparait pas, qui est aussi une variable libre.
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En résumé la condition est équivalente à

𝑆𝐷 = 𝐷𝑆 ⟺ 𝑆 = ⎛⎜
⎝

𝑠1,1 0 0
0 𝑠2,2 0
0 0 𝑠3,3

⎞⎟
⎠

(61)

c’est-à-dire que 𝑆 est une matrice diagonale .
(c) Si 𝑄 est une racine carrée de 𝐷, alors par la question précédente 𝑄 est diagonale, et c’est le cas que

nous avons traité à la question 4. Ce sont donc bien les 4 racines carrées de 𝐷.
On peut alors on déduire que nous avons trouvé toutes les racines carrées de 𝐴 : soit 𝑅 une racine
carrée de 𝐴, alors 𝑅2 = 𝐴 ce qui est équivalent à (𝑃 −1𝑅𝑃)2 = 𝑃 −1𝐴𝑃, donc la matrice 𝑄 = 𝑃 −1𝑅𝑃
est une racine carrée de 𝐷. On retrouve alors 𝑅 = 𝑃𝑄𝑃 −1.
En résumé on a trouvé exactement toutes les racines carrées de 𝐴 .

Exercice d’informatique

1. La syntaxe correcte est (iii) : les listes de longueur 𝑝 indexées par 𝑗 sont à l’intérieur, donc les lignes sont
de longueur 𝑝 (c’est le nombre de colonnes), et on répète cette construction 𝑛 fois (pour avoir une liste de
𝑛 lignes)…
Mais la syntaxe (ii) est tout à fait correcte aussi car les noms des variables n’ont pas d’importance dans
cette expression.

2. Vu en TP.

def identité(n):
A = [[0 for j in range(n)] for i in range(n)]
for i in range(n):

A[i][i] = 1
return 1

3. Double boucle pour tester l’égalité des coefficients uns par uns. Remarque : deux matrices égales doivent
avoir même taille, sinon elles ne sont pas égales, il est donc plus cohérent de renvoyer False que de vouloir
renvoyer une erreur. Il n’y a pas de fonction déjà donnée pour la taille de la matrice…

def sont_égales(A, B):
n = len(A)
p = len(A[0])
n2 = len(B)
p2 = len(B[0])
if n != n2 or p != p2:

return False
for i in range(n):

for j in range(p):
if A[i][j] != B[i][j]:

return False
return True

4. Compteur et double boucle.

def nombre_coeff_positifs(A):
n = len(A)
p = len(A[0])
c = 0
for i in range(n):

for j in range(p):
if A[i][j] >= 0:

c = c + 1
return c
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5. Vu en TP. On suppose 𝐴 ∈ ℳ𝑛,𝑝(ℝ) et 𝐵 ∈ ℳ𝑝,𝑞(ℝ) (elles sont déjà multipliables).

def produit(A, B):
n = len(A)
p = len(A[0])
q = len(B[0])
P = [[0 for j in range(q)] for i in range(n)]
for i in range(n):

for j in range(q):
for k in range(p):

P[i][j] = P[i][j] + A[i][k] * B[k][j]
return P

L’ordre de la triple boucle n’a en fait pas d’importance : calcule tous les 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗 et on les somme pour
contribuer à [𝐴𝐵]𝑖,𝑗.

6. La matrice doit être carrée de taille 𝑛, elle doit avoir 𝑛2 coefficients positifs ou nuls, et vérifier 𝐴𝑈 = 𝑈. Il
suffit donc d’introduire 𝑈.

def est_stochastique(A):
n = len(A)
p = len(A[0])
if n != p:

return False
if nombre_coeff_positifs(A) != n*n:

return False
U = [[1] for j in range(n)]
if not sont_égales(produit(A, U), U):

return False
return True

Ce n’est pas très élégant, mais utilise les fonctions précédentes.

Démontration de la remarque : si 𝐴 et 𝐵 sont toutes les deux carrées de même taille et stochastiques, alors 𝐴𝐵
est encore carrée et a encore tous ses coefficients positifs (multiplier des matrices dont tous les coefficients sont
positifs ne peut pas faire apparaitre des coefficients négatifs !) ; de plus on a par hypothèse 𝐴𝑈 = 𝑈 et 𝐵𝑈 = 𝑈
donc (𝐴𝐵)𝑈 = 𝐴(𝐵𝑈) = 𝐴𝑈 = 𝑈.
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