
DM 4 Mathématiques
Correction

Problème 1
1. Voir les questions suivantes : ∀𝑥 ∈ ℝ, 𝑥3 +𝑥2 −𝑥+2 = (𝑥+2)×(𝑥2 −𝑥+1). Pour le polynôme 𝑥 ↦ 𝑥2 −𝑥+1

alors Δ = −3 < 0, ce terme reste strictement positif sur ℝ. Donc 𝑥3 + 𝑥2 − 𝑥 + 2 = 0 si et seulement si
𝑥 = −2. Ce terme ne s’annule donc pas pour 𝑥 = −2 et ainsi 𝒟𝑓 = ℝ ∖ {−2} . En particulier 𝑓 est continue
sur 𝐼 = ]−2, +∞[, et donc des primitives existent.

2. (a) • Analyse : on cherche (𝑎, 𝑏, 𝑐) ∈ ℝ3 tels que pour tout 𝑥 ∈ 𝐼,

𝑥
𝑥3 + 𝑥2 − 𝑥 + 2

= 𝑎
𝑥 + 2

+ 𝑏𝑥 + 𝑐
𝑥2 − 𝑥 + 1

(1)

= 𝑎(𝑥2 − 𝑥 + 1) + (𝑏𝑥 + 𝑐)(𝑥 + 2)
(𝑥 + 2)(𝑥2 − 𝑥 + 1)

(2)

= (𝑎 + 𝑏)𝑥2 + (−𝑎 + 2𝑏 + 𝑐)𝑥 + (𝑎 + 2𝑐)
𝑥3 + 𝑥2 − 𝑥 + 2

(3)

Ceci est vérifié dès que
⎧{
⎨{⎩

𝑎 + 𝑏 = 0
−𝑎 + 2𝑏 + 𝑐 = 1

𝑎 + 2𝑐 = 0
(4)

On trouve alors rapidement comme solution 𝑎 = −2
7 , 𝑏 = 2

7 , 𝑐 = 1
7 .

• Synthèse : d’après les calculs

∀𝑥 ∈ 𝐼, 𝑥
𝑥3 + 𝑥2 − 𝑥 + 2

= −2
7

× 1
𝑥 + 2

+ 1
7

× 2𝑥 + 1
𝑥2 − 𝑥 + 1

(5)

(b) Alors 𝐴(𝑥) = −2
7 × 1

𝑥+2 et donc les primitives de 𝐴 sur 𝐼 sont les

𝑥 ↦ −2
7
ln(𝑥 + 2) + 𝐾1, 𝐾1 ∈ ℝ (6)

3. (a) • Analyse : on cherche (𝑑, 𝑒) ∈ ℝ2 tels que pour tout 𝑥 ∈ 𝐼,

1
7

× 2𝑥 + 1
𝑥2 − 𝑥 + 1

= 𝑑 2𝑥 − 1
𝑥2 − 𝑥 + 1

+ 𝑒
𝑥2 − 𝑥 + 1

(7)

= 2𝑑𝑥 + (−𝑑 + 𝑒)
𝑥2 − 𝑥 + 1

(8)

Ceci est vérifié dès que

{
2𝑑 = 2

7

−𝑑 + 𝑒 = 1
7

(9)

On trouve alors 𝑑 = 1
7 et 𝑒 = 2

7 .
• Synthèse : par ces calculs, on a bien

∀𝑥 ∈ 𝐼, 1
7

× 2𝑥 + 1
𝑥2 − 𝑥 + 1

= 1
7

× 2𝑥 − 1
𝑥2 − 𝑥 + 1

+ 2
7

× 1
𝑥2 − 𝑥 + 1

(10)

(b) Alors 𝐵(𝑥) = 1
7 × 2𝑥−1

𝑥2−𝑥+1 et pour cette dernière on reconnait (à des constantes près) la forme 𝑢′

𝑢 . Les
primitives de 𝐵 sur 𝐼 sont les

𝑥 ↦ 1
7
ln(𝑥2 − 𝑥 + 1) + 𝐾2, 𝐾2 ∈ ℝ (11)
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4. On pose
𝐹(𝑥) = 2

7
∫

𝑥

0

d𝑡
𝑡2 − 𝑡 + 1

(12)

(a) (Recherche informelle) On pose 𝑢 = 2𝑡−1√
3 . Alors ceci est équivalent à 𝑡 = 1+𝑢

√
3

2 . En remplaçant alors :

𝑡2 − 𝑡 + 1 = (1 + 𝑢
√

3
2

)
2

− (1 + 𝑢
√

3
2

) + 1 (13)

= 1
4

(1 + 2𝑢
√

3 + 3𝑢2) − 1
2

(1 + 𝑢
√

3) + 1 (14)

= 1
4

(1 + 2𝑢
√

3 + 3𝑢2 − 2 − 2𝑢
√

3 + 4) (15)

= 1
4

(3 + 3𝑢2) (16)

= 3
4

(1 + 𝑢2) (17)

De plus on aura d𝑡 =
√

3
2 d𝑢 ; et 𝑡 = 0 correspond à 𝑢 = − 1√

3 , 𝑡 = 𝑥 correspond à 𝑢 = 2𝑥−1√
3 .

(Formalisation) On pose 𝜑 ∶ 𝑡 ∈ [0, 𝑥] ↦ 2𝑡−1√
3 , avec 𝜑′(𝑡) = 2√

3 , et on vérifie qu’on applique bien la
formule du changement de variable :

𝐹(𝑥) = 2
7

∫
(2𝑥−1)/

√
3

−1/
√

3

√
3

2
3
4(1 + 𝑢2)

d𝑢 = 4
√

3
21

∫
(2𝑥−1)/

√
3

−1/
√

3

d𝑢
1 + 𝑢2 (18)

On peut alors calculer 𝐹 avec une primitive en arctangente, ce qui était le but :

𝐹(𝑥) = 4
√

3
21

× [arctan(𝑢)]
(2𝑥−1)/

√
3

−1/
√

3
= 4

√
3

21
arctan(2𝑥 − 1√

3
) − 4

√
3

7
arctan(− 1√

3
) = 𝐹(𝑥) (19)

(b) La partie constante ne joue aucun rôle (elle provient du choix de 𝑥 = 0 comme borne en bas de
l’intégrale). Les primitives de 𝐶 sur 𝐼 sont donc les

𝑥 ↦ 4
√

3
21

arctan(2𝑥 − 1√
3

) + 𝐾3, 𝐾3 ∈ ℝ (20)

5. Il suffit de sommer les primitives précédentes. Les constantes 𝐾1, 𝐾2, 𝐾3 se regroupent en une seule constante.
Donc toutes les primitives de 𝑓 sont les

𝑥 ↦ −2
7
ln(𝑥 + 2) + 1

7
ln(𝑥2 − 𝑥 + 1) + 4

√
3

21
arctan(2𝑥 − 1√

3
) + 𝐾, 𝐾 ∈ ℝ (21)

Remarque : le changement de variables proposé peut se retrouver aussi par la forme canonique :

𝑥2 − 𝑥 + 1 = (𝑥 − 1
2

)
2

+ 3
4

= 3
4

(( 2𝑥√
3

− 1√
3

)
2

+ 1) (22)

C’est le choix permettant de se ramener à une primitive en arctangente. Les méthodes présentées permettent
d’intégrer toutes les fonctions du type 1/𝑃 où 𝑃 est un polynôme de degré 2, avec des primitives combinant des
logarithmes et des arctangentes. Plus généralement, en factorisant les polynômes et en « décomposant en éléments
simples » les fractions (séparer un produit 1/(𝑃𝑄) en 𝐴/𝑃 + 𝐵/𝑄), on sait en théorie intégrer tous les quotients
de polynômes de n’importe quel degré.
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Problème 2
1. Un primitive est la fonction arctangente :

∫
𝑥

0

d𝑡
1 + 𝑡2 = [arctan(𝑡)]

𝑥

0
= arctan(𝑥) − arctan(0) = arctan(𝑥) (23)

2. On peut fixer 𝑡 ∈ ℝ en dehors de la récurrence. Démontrons alors pour tout 𝑛 ∈ ℕ la propriété

𝒫(𝑛) ∶ « 1
1 + 𝑡2 =

𝑛
∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+1 𝑡2𝑛+2

1 + 𝑡2» (24)

• Initialisation : pour 𝑛 = 0 cela signifie

1
1 + 𝑡2 = 1 − 𝑡2

1 + 𝑡2 (25)

et c’est bien vrai.
• Hérédité : soit 𝑛 ∈ ℕ, supposons 𝒫(𝑛). Alors

𝑛+1

∑
𝑘=0

(−1)𝑘𝑡2𝑘 =
𝑛

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+1𝑡2𝑛+2 (26)

et donc
𝑛+1

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+2 𝑡2(𝑛+1)+2

1 + 𝑡2 = (
𝑛

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+1𝑡2𝑛+2) + (−1)𝑛+2 𝑡2𝑛+4

1 + 𝑡2 (27)

=
𝑛

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + ((−1)𝑛+1𝑡2𝑛+2 + (−1)𝑛+2 𝑡2𝑛+4

1 + 𝑡2 ) (28)

Mais pour ce terme sous la parenthèse, mettons au même dénominateur :

(−1)𝑛+1𝑡2𝑛+2 + (−1)𝑛+2 𝑡2𝑛+4

1 + 𝑡2 = (−1)𝑛+1 (𝑡2𝑛+2(1 + 𝑡2) − 𝑡2𝑛+4

1 + 𝑡2 ) (29)

= (−1)𝑛+1 × 𝑡2𝑛+2 + 𝑡2𝑛+4 − 𝑡2𝑛+4

1 + 𝑡2 (30)

= (−1)𝑛+1 𝑡2𝑛+2

1 + 𝑡2 (31)

et donc on retrouve bien
𝑛+1

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+2 𝑡2(𝑛+1)+2

1 + 𝑡2 =
𝑛

∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+1 𝑡2𝑛+2

1 + 𝑡2 = 1
1 + 𝑡2 (32)

par l’hypothèse de récurrence 𝒫(𝑛).
Conclusion : 𝒫(𝑛) est vraie pour tout 𝑛 ∈ ℕ.
Remarque : c’est en fait directement la formule pour la somme des termes d’une suite géométrique, de
raison −𝑡2, qu’il est plus facile de lire sous cette forme :

𝑛
∑
𝑘=0

(−1)𝑘𝑡2𝑘 =
𝑛

∑
𝑘=0

(−𝑡2)𝑘 = 1 − (−𝑡2)𝑛+1

1 + 𝑡2 = 1 − (−1)𝑛+1𝑡2𝑛+2

1 + 𝑡2 (33)

3. L’égalité précédente est valable pour tout 𝑡 ∈ ℝ. On peut donc l’intégrer entre 0 et 𝑥 (𝑥 est fixé dans ℝ).
Par linéarité , le symbole intégrale passe par-dessus le symbole somme :

∫
𝑥

0

1
1 + 𝑡2 d𝑡 = ∫

𝑥

0
(

𝑛
∑
𝑘=0

(−1)𝑘𝑡2𝑘 + (−1)𝑛+1 𝑡2𝑛+2

1 + 𝑡2 ) d𝑡 (34)

=
𝑛

∑
𝑘=0

∫
𝑥

0
(−1)𝑘𝑡2𝑘 d𝑡 + ∫

𝑥

0
(−1)𝑛+1 𝑡2𝑛+2

1 + 𝑡2 d𝑡 (35)

=
𝑛

∑
𝑘=0

(−1)𝑘 ∫
𝑥

0
𝑡2𝑘 d𝑡 + (−1)𝑛+1 ∫

𝑥

0

𝑡2𝑛+2

1 + 𝑡2 d𝑡 (36)
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Or on calcule à part, pour tout entier 𝑘 ⩾ 0 :

∫
𝑥

0
𝑡2𝑘 d𝑡 = [ 𝑡2𝑘+1

2𝑘 + 1
]

𝑥

0
= 𝑥2𝑘+1

2𝑘 + 1
(37)

d’où

arctan(𝑥) =
𝑛

∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
+ (−1)𝑛+1 ∫

𝑥

0

𝑡2𝑛+2

1 + 𝑡2 d𝑡 (38)

4. (Recherche informelle) On pose 𝑡 = 𝑢𝑥, alors 𝑡 = 0 correspond à 𝑢 = 0, et 𝑡 = 𝑥 correspond à 𝑢 = 1. De
plus d𝑡 = 𝑥 d𝑢 donc pour la « forme différentielle » :

𝑡2𝑛+2

1 + 𝑡2 d𝑡 = 𝑥2𝑛+2𝑢2𝑛+2

1 + 𝑥2𝑢2 × 𝑥 d𝑢 (39)

(Formalisation) On pose 𝜑 ∶ 𝑢 ∈ [0, 1] ↦ 𝑢𝑥 avec 𝜑(0) = 0, 𝜑(1) = 𝑥, et 𝜑′(𝑢) = 𝑥 et on vérifie qu’on a bien
appliqué la formule du changement de variable :

∫
𝑥

0

𝑡2𝑛+2

1 + 𝑡2 d𝑡 = ∫
1

0

𝑥2𝑛+2𝑢2𝑛+2

1 + 𝑥2𝑢2 × 𝑥 d𝑢 (40)

Par linéarité (sortir les 𝑥) c’est aussi

∫
𝑥

0

𝑡2𝑛+2

1 + 𝑡2 d𝑡 = 𝑥2𝑛+3 ∫
1

0

𝑢2𝑛+2

1 + 𝑥2𝑢2 d𝑢 (41)

5. Quelque soit 0 ⩽ 𝑢 ⩽ 1, alors 𝑥2 ⩾ 0 et donc 1 + 𝑥2𝑢2 ⩾ 1 donc

0 ⩽ 𝑢2𝑛+2

1 + 𝑥2𝑢2 ⩽ 𝑢2𝑛+2 (42)

En intégrant de 0 à 1, avec la croissance de l’intégrale, il vient

0 ⩽ ∫
1

0

𝑢2𝑛+2

1 + 𝑥2𝑢2 d𝑢 ⩽ ∫
1

0
𝑢2𝑛+2 d𝑢 (43)

Ce dernier terme se calcule à part comme précédemment :

∫
1

0
𝑢2𝑛+2 d𝑢 = [ 𝑢2𝑛+3

2𝑛 + 3
]

1

0
= 1

2𝑛 + 3
(44)

Alors d’après les questions précédentes

∣arctan(𝑥) −
𝑛

∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
∣ = ∣(−1)𝑛+1𝑥2𝑛+3 ∫

1

0

𝑢2𝑛+2

1 + 𝑥2𝑢2 d𝑢∣ (45)

= |𝑥|2𝑛+3 ∫
1

0

𝑢2𝑛+2

1 + 𝑥2𝑢2 d𝑢 (46)

⩽ |𝑥|2𝑛+3 × 1
2𝑛 + 3

(47)

C’est bien

∣arctan(𝑥) −
𝑛

∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
∣ ⩽ |𝑥|2𝑛+3

2𝑛 + 3
(48)
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6. Sous cette hypothèse alors

lim
𝑛→+∞

|𝑥|2𝑛+3

2𝑛 + 3
= 0 (49)

C’est maintenant le théorème des gendarmes : pour tout 𝑛 ∈ ℕ on sait

−|𝑥|2𝑛+3

2𝑛 + 3
⩽ arctan(𝑥) −

𝑛
∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
⩽ |𝑥|2𝑛+3

2𝑛 + 3
(50)

et les termes des deux côtés tendent vers 0, donc

lim
𝑛→+∞

(arctan(𝑥) −
𝑛

∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
) = 0 (51)

ce qui est bien la même chose que

lim
𝑛→+∞

𝑛
∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

2𝑘 + 1
= arctan(𝑥) (52)

7. Il s’agit tout simplement de calculer une somme, tant que le terme |𝑥|2𝑛+3

2𝑛+3 est plus grand que 𝜀 : à la fin de
la boucle, il sera strictement plus petit que 𝜀. Si le 𝑥 passé en argument est plus grand que 1, cela ne se
produit jamais et on a une boucle infinie.
Autorisons-nous à utiliser la fonction Python de base abs(x) pour la valeur absolue (on sait bien sûr la
programmer nous-même s’il faut). Version naïve :

def arctan(x, epsilon):
# éviter une boucle infinie
assert -1 < x and x < 1
# somme
S = 0
k = 0
while abs(x)**(2*k+3) / (2*k+3) >= epsilon:

S = S + (-1)**k * x**(2*k+1) / (2*k+1)
k = k + 1

return S

Ce programme n’est pas extrêmement intelligent. Au minimum, introduire une variable qui représente les
puissances impaires de 𝑥 au fur et à mesure de la boucle, pour éviter de faire recalculer les puissances (et
donc les produits 𝑥 × ⋯ × 𝑥) depuis le début. On peut aussi remplacer les (−1)𝑘 (qui a priori nécessitent des
calculs de puissances) par des tests sur la parité de 𝑘 pour savoir si on doit sommer ou soustraire.
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def arctan(x, epsilon):
# éviter une boucle infinie
assert -1 < x and x < 1
# somme
S = 0
k = 0
# variable qui représente x**(2k+1)
xx = x
while abs(xx*x*x) / (2*k+3) >= epsilon:

if k % 2 == 0:
# k pair, sommer
S = S + xx / (2*k+1)

else:
# k impair, retrancher
S = S - xx / (2*k+1)

k = k + 1
# multiplier deux fois par x
xx = xx * x * x

return S

Remarque : c’est cette formule qui est réellement utilisée par les ordinateurs et par les calculatrices pour cal-
culer arctan(𝑥), surtout quand 𝑥 est petit et qu’il suffit de sommer peu de termes pour obtenir une très bonne
approximation.
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