
DM 3 Mathématiques
Correction

TD 10 exercice 5
Pour tout l’exercice on pose 𝑃 ∶ 𝑥 ↦ 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 avec (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4, et alors 𝑃 ′ ∶ 𝑥 ↦ 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐. Les
inconnues sont les variables (𝑎, 𝑏, 𝑐, 𝑑), ce sont celles-ci qu’il faut bien aligner en colonnes. On utilise certainement
la méthode « tout d’un coup ».

• 𝜑1 Soit 𝑃 ∈ 𝐸, soit (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4. L’équation 𝜑1(𝑃 ) = (𝛼, 𝛽, 𝛾, 𝛿) est équivalente à :

𝜑1(𝑃 ) = (𝛼, 𝛽, 𝛾, 𝛿) ⟺

⎧{{
⎨{{⎩

−𝑎 + 𝑏 − 𝑐 + 𝑑 = 𝛼 𝐿1

−8𝑎 + 4𝑏 − 2𝑐 + 𝑑 = 𝛽 𝐿2

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛾 𝐿3

8𝑎 + 4𝑏 + 2𝑐 + 𝑑 = 𝛿 𝐿4

(1)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛾 𝐿3

2𝑏 + 2𝑑 = 𝛼 + 𝛾 𝐿1 + 𝐿3

12𝑏 + 6𝑐 + 9𝑑 = 𝛽 + 8𝛾 𝐿2 + 8𝐿3

− 4𝑏 − 6𝑐 − 7𝑑 = 𝛿 − 8𝛾 𝐿4 − 8𝐿3

(2)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛾 𝐿1

2𝑏 + 2𝑑 = 𝛼 + 𝛾 𝐿2

6𝑐 − 3𝑑 = −6𝛼 + 𝛽 + 2𝛾 𝐿3 − 6𝐿2

− 6𝑐 − 3𝑑 = 2𝛼 − 6𝛾 + 𝛿 𝐿4 + 2𝐿2

(3)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛾 𝐿1

2𝑏 + 2𝑑 = 𝛼 + 𝛾 𝐿2

6𝑐 − 3𝑑 = −6𝛼 + 𝛽 + 2𝛾 𝐿3

− 6𝑑 = −4𝛼 + 𝛽 − 4𝛾 + 𝛿 𝐿4 + 𝐿3

(4)

À ce stade le système est échelonné. Il est de rang 4 , c’est un système de Cramer . Cela signifie déjà que
l’application 𝜑1 est bijective : quelque soit le choix de (𝛼, 𝛽, 𝛾, 𝛿), ce système admet une unique solution, et
donc il existe un unique polynôme 𝑃 tel que 𝜑1(𝑃 ) = (𝛼, 𝛽, 𝛾, 𝛿) (concrètement : on peut fixer des ordonnées
quelconques en −2, −1, 1, 2, et trouver un polynôme de degré inférieur ou égal à 3 passant par ces 4 points).
Il reste alors à résoudre le système pour trouver l’application réciproque : on trouve successivement (en
remontant de bas en haut)

𝑑 = 1
6

(4𝛼 − 𝛽 + 4𝛾 − 𝛿) (5)

𝑐 = 1
12

( − 8𝛼 + 𝛽 + 8𝛾 − 𝛿) (6)

𝑏 = 1
6

( − 𝛼 + 𝛽 − 𝛾 + 𝛿) (7)

𝑎 = 1
12

(2𝛼 − 𝛽 − 2𝛾 + 𝛿) (8)

et 𝜑−1
1 est l’application qui à (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4 associe le polynôme 𝑃 ∶ 𝑥 ↦ 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 avec les

coefficients (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4 ci-dessus.
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• 𝜑2 Même méthode. Soit 𝑃 ∈ 𝐸, soit (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4.

𝜑1(𝑃 ) = (𝛼, 𝛽, 𝛾, 𝛿) ⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛼 𝐿1

3𝑎 + 2𝑏 + 𝑐 = 𝛽 𝐿2

−𝑎 + 𝑏 − 𝑐 + 𝑑 = 𝛾 𝐿3

3𝑎 − 2𝑏 + 𝑐 = 𝛿 𝐿4

(9)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛼 𝐿1

− 𝑏 − 2𝑐 − 3𝑑 = −3𝛼 + 𝛽 𝐿2 − 3𝐿1

2𝑏 + 2𝑑 = 𝛼 + 𝛾 𝐿3 + 𝐿1

− 5𝑏 − 2𝑐 − 3𝑑 = −3𝛼 + 𝛿 𝐿4 − 3𝐿1

(10)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛼 𝐿1

𝑏 + 2𝑐 + 3𝑑 = 3𝛼 − 𝛽 −𝐿2

− 4𝑐 − 4𝑑 = −5𝛼 + 2𝛽 + 𝛾 𝐿3 + 2𝐿2

8𝑐 + 12𝑑 = 12𝛼 − 5𝛽 + 𝛿 𝐿4 − 5𝐿2

(11)

⟺

⎧{{
⎨{{⎩

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝛼 𝐿1

𝑏 + 2𝑐 + 3𝑑 = 3𝛼 − 𝛽 𝐿2

4𝑐 + 4𝑑 = 5𝛼 − 2𝛽 − 𝛾 −𝐿3

4𝑑 = 2𝛼 − 𝛽 + 2𝛾 + 𝛿 𝐿4 + 2𝐿3

(12)

Le système est échelonné, de rang 4 , c’est un système de Cramer ; encore une fois, cela signifie que
𝜑2 est bijective . Concrètement : on peut fixer une valeur et une tangente, en 1 et en −1, et trouver un
unique polynôme de degré au plus 3 passant par ces valeurs et ces tangentes.
On trouve alors en résolvant

𝑑 = 1
4

(2𝛼 − 𝛽 + 2𝛾 + 𝛿) (13)

𝑐 = 1
4

(3𝛼 − 𝛽 − 3𝛾 − 𝛿) (14)

𝑏 = 1
4

(𝛽 − 𝛿) (15)

𝑎 = 1
4

( − 𝛼 + 𝛽 + 𝛾 + 𝛿) (16)

et 𝜑−1
2 est l’application qui à (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4 associe le polynôme donné par les coefficients ci-dessus.
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• 𝜑3 Soit 𝑃 ∈ 𝐸, soit (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4.

𝜑1(𝑃 ) = (𝛼, 𝛽, 𝛾, 𝛿) ⟺

⎧{{
⎨{{⎩

−𝑎 + 𝑏 − 𝑐 + 𝑑 = 𝛼 𝐿1

3𝑎 − 2𝑏 + 𝑐 = 𝛽 𝐿2

3𝑎 + 2𝑏 + 𝑐 = 𝛾 𝐿3

8𝑎 + 4𝑏 + 2𝑐 + 𝑑 = 𝛿 𝐿4

(17)

⟺

⎧{{
⎨{{⎩

𝑎 − 𝑏 + 𝑐 − 𝑑 = −𝛼 −𝐿1

𝑏 − 2𝑐 + 3𝑑 = 3𝛼 + 𝛽 𝐿2 + 3𝐿1

5𝑏 − 2𝑐 + 3𝑑 = 3𝛼 + 𝛾 𝐿3 + 3𝐿1

12𝑏 − 6𝑐 + 9𝑑 = 8𝛼 + 𝛿 𝐿4 + 8𝐿1

(18)

⟺

⎧{{
⎨{{⎩

𝑎 − 𝑏 + 𝑐 − 𝑑 = −𝛼 𝐿1

𝑏 − 2𝑐 + 3𝑑 = 3𝛼 + 𝛽 𝐿2

8𝑐 − 12𝑑 = −12𝛼 − 5𝛽 + 𝛾 𝐿3 − 5𝐿2

18𝑐 − 27𝑑 = −28𝛼 − 12𝛽 + 𝛿 𝐿4 − 12𝐿2

(19)

⟺

⎧{{
⎨{{⎩

𝑎 − 𝑏 + 𝑐 − 𝑑 = −𝛼 𝐿1

𝑏 − 2𝑐 + 3𝑑 = 3𝛼 + 𝛽 𝐿2

8𝑐 − 12𝑑 = −12𝛼 − 5𝛽 + 𝛾 𝐿3

0 = −4𝛼 − 3𝛽 − 9𝛾 + 4𝛿 4𝐿4 − 9𝐿3

(20)

C’est un système de rang 3 avec une condition de compatibilité . Il n’admet donc pas des solutions quelque
soient les valeurs de (𝛼, 𝛽, 𝛾, 𝛿) ∈ ℝ4 et donc 𝜑3 n’est pas surjective : précisément l’élément (𝛼, 𝛽, 𝛾, 𝛿) est
dans l’image si et seulement si la relation 0 = −4𝛼−3𝛽−9𝛾 +4𝛿 est vérifiée. Par exemple l’élément (1, 0, 0, 0)
n’est pas dans l’image de 𝜑3 (concrètement : il n’existe pas de polynôme 𝑃 de degré inférieur à 3 tel que
𝑃(−1) = 1, 𝑃 ′(−1) = 0, 𝑃 ′(1) = 0 et 𝑃(2) = 0).
Dans le même temps nous allons voir que 𝜑3 n’est pas injective car les éléments de ℝ4 qui ont un antécédent
en ont une infinité : la variable 𝑑 étant libre , un élément qui admet un antécédent en admet en fait un pour
chacune des valeurs de 𝑑 ∈ ℝ. Déterminons par exemple tous les antécédents de (0, 0, 0, 0) : cela revient à
résoudre (les calculs sont maintenant plus simples car on remplace tout le second membre ci-dessus par 0)

⎧{{
⎨{{⎩

𝑎 − 𝑏 + 𝑐 − 𝑑 = 0
𝑏 − 2𝑐 + 3𝑑 = 0

8𝑐 − 12𝑑 = 0
0𝑑 = 0

(21)

𝑑 est libre donc on pose 𝑑 = 𝜆 ∈ ℝ et alors on trouve en remontant

𝑑 = 𝜆 (22)

𝑐 = 3
2

𝜆 (23)

𝑏 = 0 (24)

𝑎 = −𝜆
2

(25)

Autrement dit tous les antécédents de (0, 0, 0, 0) sont les polynômes

𝑃 ∶ 𝑥 ↦ −𝜆
2

(𝑥3 − 3𝑥 − 2) (26)

qui vérifient tous 𝑃(−1) = 𝑃 ′(−1) = 𝑃 ′(1) = 𝑃(2) = 0 mais ne sont pas le polynôme nul.
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TD 11 exercice 12
1. Les éléments, déjà listés selon le bon ordre intelligent :

𝐸1 = {0, 1} (27)

𝐸2 = {00, 01, 10} (28)

𝐸3 = {000, 001, 010, 100, 101} (29)

𝐸4 = {0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010} (30)

𝐸5 = {00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100, 10101} (31)

On déduit donc Card(𝐸1) = 2 , Card(𝐸2) = 3 , Card(𝐸3) = 5 , Card(𝐸4) = 8 et enfin Card(𝐸5) = 13 .
Remarque : il est cohérent de considérer que 𝐸0 est constitué d’un unique élément, la « suite vide », et que
Card(𝐸0) = 1.

2. Si une suite de 𝐸𝑛 démarre par 0, alors elle est dans 𝐴𝑛. Sinon elle démarre par 1, dans ce cas (comme
𝑛 ⩾ 2) le caractère suivant ne peut pas être encore un 1, donc la suite démarre en fait par 10. Cela montre
que toute suite de 𝐸𝑛 est soit dans 𝐴𝑛 soit dans 𝐵𝑛, autrement dit ces deux ensembles forment une partition
de 𝐸𝑛 :

𝐸𝑛 = 𝐴𝑛 ∪ 𝐵𝑛 et 𝐴𝑛 ∩ 𝐵𝑛 = ∅ (32)

3. Par la relation précédente on déduit automatiquement

Card(𝐸𝑛) = Card(𝐴𝑛) + Card(𝐵𝑛) (33)

Mais il y a autant de suites dans 𝐴𝑛 que dans 𝐸𝑛−1 : formellement, 𝐴𝑛 est en bijection avec 𝐸𝑛−1, la bijection
retire le premier 0 de la suite (et la bijection réciproque le remet !). Donc Card(𝐴𝑛) = Card(𝐸𝑛−1) . De
même, il y a autant de suites dans 𝐵𝑛 que dans 𝐸𝑛−2, la bijection consistant à retirer la séquence 10 au
début de la suite ou bien à la remettre. Donc Card(𝐵𝑛) = Card(𝐸𝑛−2) (ici il faut 𝑛 ⩾ 3, ou bien considérer
que Card(𝐸0) = 1 : effectivement, il y a un unique élement dans 𝐵2, la suite 10, qui est bien la séquence 10
ajoutée à la suite vide).
Conclusion : en combinant avec la question précédente

Card(𝐸𝑛) = Card(𝐸𝑛−1) + Card(𝐸𝑛−2) (34)

Remarque : il est important de comprendre que les questions précédentes permettent non seulement de compter les
éléments de 𝐸𝑛, mais aussi de les énumérer tous dans un ordre intelligent, et c’est ce qui est fait à la première
question. On démarre avec 𝐸1 = {0, 1}, et pour lister les élements de 𝐸𝑛, on ajoute un 0 devant tous ceux de
𝐸𝑛−1, puis on ajoute un 10 devant tous ceux de 𝐸𝑛−2. Cela donne un ordre logique sur tous les éléments de 𝐸𝑛
qui permet d’être certain de les lister tous une et une seule fois. Cela est aussi très lié au chapitre Récursivité
en informatique : si on veut écrire une fonction qui nous donne la liste de tous les éléments de 𝐸𝑛 (une liste
de chaines de caractères tous composés de "0" et de "1") alors c’est une très bonne idée d’écrire une fonction
récursive, qui récupère tous les éléments de 𝐸𝑛−1 auxquels elle ajoute à tous le "0" initial, et qui récupère aussi
tous les élements de 𝐸𝑛−2 auquels elle ajoute un "10" initial ; puis fabrique la liste de tous les éléments de 𝐸𝑛 et
la renvoie.

4. On reconnait la relation de récurrence de Fibonacci : posons 𝑢𝑛 = Card(𝑢𝑛) alors

𝑢1 = 2, 𝑢2 = 3 et ∀𝑛 ⩾ 3, 𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2 (35)

(éventuellement 𝑢0 = 1). L’équation caractéristique est 𝑞2 = 𝑞 + 1, ses deux racines sont 𝜑 = 1+
√

5
2 et

𝜑 = 1−
√

5
2 , l’expression proposée étant déjà de la forme 𝐴𝜑𝑛 +𝐵𝜑𝑛, il suffit de vérifier qu’elle donne la bonne

valeur pour 𝑢1 et pour 𝑢2. Or
1√
5

(𝜑3 − 𝜑3) = 2 (36)

1√
5

(𝜑4 − 𝜑4) = 3 (37)
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Conclusion :

∀𝑛 ⩾ 1, Card(𝐸𝑛) = 1√
5

(𝜑𝑛+2 − 𝜑𝑛+2) (38)

5. Soit 𝑛 ⩾ 1. D’une part pour 𝜑 :

𝜑𝑛+2 = 1
2𝑛+2 (1 +

√
5)

𝑛+2
= 1

2𝑛+2

𝑛+2

∑
𝑘=0

(𝑛 + 2
𝑘

)(
√

5)𝑘 (39)

Dans cette somme, les termes (
√

5)𝑘 pour 𝑘 pair sont des nombres entiers (si 𝑘 = 2𝑗 alors (
√

5)𝑘 = 5𝑗), et
les termes (

√
5)𝑘 pour 𝑘 impair sont des multiples entiers de

√
5 (si 𝑘 = 2𝑗 + 1 alors (

√
5)𝑘 = 5𝑗√5). Si 𝑘 est

pair alors on pose 𝑘 = 2𝑗, avec 0 ⩽ 𝑘 ⩽ 𝑛 + 2 donc 0 ⩽ 𝑗 ⩽ ⌊𝑛+2
2 ⌋, et si 𝑘 est impair alors on pose 𝑘 = 2𝑗 + 1

et alors 0 ⩽ 𝑗 ⩽ ⌊𝑛+1
2 ⌋ (car 2𝑗 ⩽ 𝑛 + 1). Donc :

𝜑𝑛+2 = 1
2𝑛+2

⎛⎜
⎝

⌊ 𝑛+2
2 ⌋

∑
𝑗=0

(𝑛 + 2
2𝑗

)(
√

5)2𝑗 +
⌊ 𝑛+1

2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)(
√

5)2𝑗+1⎞⎟
⎠

(40)

= 1
2𝑛+2

⎛⎜
⎝

⌊ 𝑛+2
2 ⌋

∑
𝑗=0

(𝑛 + 2
2𝑗

)5𝑗 +
√

5
⌊ 𝑛+1

2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)5𝑗⎞⎟
⎠

(41)

Pour 𝜑 maintenant : de même

𝜑𝑛+2 = 1
2𝑛+2 (1 −

√
5)

𝑛
= 1

2𝑛+2

𝑛+2

∑
𝑘=0

(𝑛 + 2
𝑘

)(−1)𝑘(
√

5)𝑘 (42)

Les termes pour 𝑘 pair sont exactement les même que pour 𝜑, mais ceux pour 𝑘 impair sont opposés !

𝜑𝑛+2 = 1
2𝑛+2

⎛⎜
⎝

⌊ 𝑛+2
2 ⌋

∑
𝑗=0

(𝑛 + 2
2𝑗

)(−1)2𝑗(
√

5)2𝑗 +
⌊ 𝑛+1

2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)(−1)2𝑗+1(
√

5)2𝑗+1⎞⎟
⎠

(43)

= 1
2𝑛+2

⎛⎜
⎝

⌊ 𝑛+2
2 ⌋

∑
𝑗=0

(𝑛 + 2
2𝑗

)5𝑗 −
√

5
⌊ 𝑛+1

2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)5𝑗⎞⎟
⎠

(44)

On trouve alors directement :

𝜑𝑛+2 + 𝜑𝑛+2 = 2 × 1
2𝑛+2 ×

√
5

⌊ 𝑛+1
2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)5𝑗 (45)

d’où

Card(𝐸𝑛) = 1√
5

(𝜑𝑛+2 + 𝜑𝑛+2) = 1
2𝑛+1

⌊ 𝑛+1
2 ⌋

∑
𝑗=0

( 𝑛 + 2
2𝑗 + 1

)5𝑗 (46)
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